透明物体阴影检测的自校正算法

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-06 DOI:10.1007/s10489-024-06001-z
Jiaqi Li, Shuhuan Wen, Rongting Chen, Di Lu, Jianyi Hu, Hong Zhang
{"title":"透明物体阴影检测的自校正算法","authors":"Jiaqi Li,&nbsp;Shuhuan Wen,&nbsp;Rongting Chen,&nbsp;Di Lu,&nbsp;Jianyi Hu,&nbsp;Hong Zhang","doi":"10.1007/s10489-024-06001-z","DOIUrl":null,"url":null,"abstract":"<div><p>Shadow detection for transparent objects is a challenging task. The difficulty arises from the fact that transparent objects and shadow regions are prone to occlusion, and the boundaries of transparent objects become more blurred due to optical effects, ultimately leading to incomplete shadow detection results. In this paper, a novel semisupervised shadow detection algorithm based on self-correction is proposed to address these problems. We construct a shadow detection module based on a hybrid attention mechanism CBAM and integrate the short-term memory capability of LSTM networks, assisting the model in accurately localizing shadow areas based on prior experience. To address the issue of easily overlooked shadow areas, we aim to minimize the difference between the predicted shadow mask and the real shadow mask as our optimization objective. We train the shadow self-correction module using binary cross-entropy loss to enhance the model’s ability to detect shadow areas that are prone to be overlooked. Furthermore, a pretrained boundary detector is utilized to obtain the boundary information between the predicted and real shadow masks. The shadow detection model is then optimized under the constraint of boundary consistency, enabling the model to more accurately identify the boundaries of shadow regions and enhancing the shadow detection performance. The experimental results indicate that, compared to existing shadow detection algorithms, the proposed algorithm performs well in terms of both transparent and nontransparent object shadow detection.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A self-correction algorithm for transparent object shadow detection\",\"authors\":\"Jiaqi Li,&nbsp;Shuhuan Wen,&nbsp;Rongting Chen,&nbsp;Di Lu,&nbsp;Jianyi Hu,&nbsp;Hong Zhang\",\"doi\":\"10.1007/s10489-024-06001-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shadow detection for transparent objects is a challenging task. The difficulty arises from the fact that transparent objects and shadow regions are prone to occlusion, and the boundaries of transparent objects become more blurred due to optical effects, ultimately leading to incomplete shadow detection results. In this paper, a novel semisupervised shadow detection algorithm based on self-correction is proposed to address these problems. We construct a shadow detection module based on a hybrid attention mechanism CBAM and integrate the short-term memory capability of LSTM networks, assisting the model in accurately localizing shadow areas based on prior experience. To address the issue of easily overlooked shadow areas, we aim to minimize the difference between the predicted shadow mask and the real shadow mask as our optimization objective. We train the shadow self-correction module using binary cross-entropy loss to enhance the model’s ability to detect shadow areas that are prone to be overlooked. Furthermore, a pretrained boundary detector is utilized to obtain the boundary information between the predicted and real shadow masks. The shadow detection model is then optimized under the constraint of boundary consistency, enabling the model to more accurately identify the boundaries of shadow regions and enhancing the shadow detection performance. The experimental results indicate that, compared to existing shadow detection algorithms, the proposed algorithm performs well in terms of both transparent and nontransparent object shadow detection.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06001-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06001-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

透明物体的阴影检测是一项具有挑战性的任务。难点在于透明物体和阴影区域容易遮挡,并且由于光学效应,透明物体的边界变得更加模糊,最终导致阴影检测结果不完整。针对这些问题,本文提出了一种基于自校正的半监督阴影检测算法。我们构建了一个基于混合注意机制CBAM的阴影检测模块,并结合LSTM网络的短期记忆能力,帮助模型根据先验经验准确定位阴影区域。为了解决容易被忽略的阴影区域的问题,我们的目标是最小化预测阴影遮罩和真实阴影遮罩之间的差异作为我们的优化目标。我们使用二元交叉熵损失来训练阴影自校正模块,以增强模型检测容易被忽略的阴影区域的能力。此外,利用预训练的边界检测器来获取预测阴影掩模与真实阴影掩模之间的边界信息。然后在边界一致性约束下对阴影检测模型进行优化,使模型能够更准确地识别阴影区域的边界,提高阴影检测性能。实验结果表明,与现有的阴影检测算法相比,本文算法在透明和非透明物体阴影检测方面都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A self-correction algorithm for transparent object shadow detection

Shadow detection for transparent objects is a challenging task. The difficulty arises from the fact that transparent objects and shadow regions are prone to occlusion, and the boundaries of transparent objects become more blurred due to optical effects, ultimately leading to incomplete shadow detection results. In this paper, a novel semisupervised shadow detection algorithm based on self-correction is proposed to address these problems. We construct a shadow detection module based on a hybrid attention mechanism CBAM and integrate the short-term memory capability of LSTM networks, assisting the model in accurately localizing shadow areas based on prior experience. To address the issue of easily overlooked shadow areas, we aim to minimize the difference between the predicted shadow mask and the real shadow mask as our optimization objective. We train the shadow self-correction module using binary cross-entropy loss to enhance the model’s ability to detect shadow areas that are prone to be overlooked. Furthermore, a pretrained boundary detector is utilized to obtain the boundary information between the predicted and real shadow masks. The shadow detection model is then optimized under the constraint of boundary consistency, enabling the model to more accurately identify the boundaries of shadow regions and enhancing the shadow detection performance. The experimental results indicate that, compared to existing shadow detection algorithms, the proposed algorithm performs well in terms of both transparent and nontransparent object shadow detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Insulator defect detection from aerial images in adverse weather conditions A review of the emotion recognition model of robots Knowledge guided relation enhancement for human-object interaction detection A modified dueling DQN algorithm for robot path planning incorporating priority experience replay and artificial potential fields A non-parameter oversampling approach for imbalanced data classification based on hybrid natural neighbors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1