以聚合物共混物为基体的纤维增强复合材料的改性

IF 2.3 4区 化学 Q3 POLYMER SCIENCE Polymer Journal Pub Date : 2024-10-10 DOI:10.1038/s41428-024-00977-8
Takayuki Hirai
{"title":"以聚合物共混物为基体的纤维增强复合材料的改性","authors":"Takayuki Hirai","doi":"10.1038/s41428-024-00977-8","DOIUrl":null,"url":null,"abstract":"Composite materials are widely used in many industrial products because they combine the properties of organic and inorganic materials. This review focuses on the property modification of composite materials where polymer blends are used as matrices to obtain functional composites. Polymer blends can be fabricated via the physical process of melt mixing; thus, they have good scalability. However, poor material design criteria compared with those of polymer synthesis are critical defects in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. Polymer blends can be divided into three categories according to their phase morphology: immiscible, miscible, and reactive. They exhibit characteristic behaviors that depend on their morphology. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms. To provide specific examples, two previous studies on the modification of carbon- and glass-fiber-reinforced plastics were summarized. One study involves improving the hygrothermal resistance of carbon-fiber-reinforced polyamide by incorporating both miscible and immiscible components into the polyamide. The other study involves fabricating transparent glass-fiber-reinforced polyamides by investigating miscible and reactive blends. Our recent study on the property modification of composite materials where polymer blends are used as matrices were summarized. Polymer blends have good scalability; however, poor material design criteria is a critical defect in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms, and hygrothermal resistant CFRP and transparent GFRP using polymer blends as matrix were obtained.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"79-86"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of fiber-reinforced composites using polymer blends as matrices\",\"authors\":\"Takayuki Hirai\",\"doi\":\"10.1038/s41428-024-00977-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite materials are widely used in many industrial products because they combine the properties of organic and inorganic materials. This review focuses on the property modification of composite materials where polymer blends are used as matrices to obtain functional composites. Polymer blends can be fabricated via the physical process of melt mixing; thus, they have good scalability. However, poor material design criteria compared with those of polymer synthesis are critical defects in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. Polymer blends can be divided into three categories according to their phase morphology: immiscible, miscible, and reactive. They exhibit characteristic behaviors that depend on their morphology. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms. To provide specific examples, two previous studies on the modification of carbon- and glass-fiber-reinforced plastics were summarized. One study involves improving the hygrothermal resistance of carbon-fiber-reinforced polyamide by incorporating both miscible and immiscible components into the polyamide. The other study involves fabricating transparent glass-fiber-reinforced polyamides by investigating miscible and reactive blends. Our recent study on the property modification of composite materials where polymer blends are used as matrices were summarized. Polymer blends have good scalability; however, poor material design criteria is a critical defect in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms, and hygrothermal resistant CFRP and transparent GFRP using polymer blends as matrix were obtained.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"57 1\",\"pages\":\"79-86\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-024-00977-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00977-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

复合材料由于结合了有机材料和无机材料的特性,在许多工业产品中得到了广泛的应用。本文综述了以高分子共混物为基体制备功能复合材料的性能改性方法。聚合物共混物可以通过熔融混合的物理过程制备;因此,它们具有良好的可扩展性。然而,与聚合物合成相比,较差的材料设计标准是聚合物共混的关键缺陷。为了解决这一问题,我们重点研究了聚合物共混物的多尺度相分离。聚合物共混物根据其相形态可分为三类:非混相、混相和反应型。它们表现出的特征行为取决于它们的形态。我们提出了一种新的材料设计概念,将不同相形态的聚合物组合在一起,以获得组合的改性机制。为了提供具体的例子,总结了两项关于碳纤维和玻璃纤维增强塑料改性的研究。一项研究涉及通过在聚酰胺中掺入混相和非混相成分来改善碳纤维增强聚酰胺的耐热性。另一项研究涉及通过研究混溶和反应性共混物来制造透明玻璃纤维增强聚酰胺。综述了近年来以高分子共混物为基体的复合材料性能改性的研究进展。聚合物共混物具有良好的可扩展性;然而,不良的材料设计标准是聚合物共混的一个关键缺陷。为了解决这一问题,我们重点研究了聚合物共混物的多尺度相分离。我们提出了一种新的材料设计理念,将不同相形态的聚合物组合在一起,获得了组合改性机制,并以聚合物共混物为基体获得了耐湿热的CFRP和透明的GFRP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification of fiber-reinforced composites using polymer blends as matrices
Composite materials are widely used in many industrial products because they combine the properties of organic and inorganic materials. This review focuses on the property modification of composite materials where polymer blends are used as matrices to obtain functional composites. Polymer blends can be fabricated via the physical process of melt mixing; thus, they have good scalability. However, poor material design criteria compared with those of polymer synthesis are critical defects in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. Polymer blends can be divided into three categories according to their phase morphology: immiscible, miscible, and reactive. They exhibit characteristic behaviors that depend on their morphology. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms. To provide specific examples, two previous studies on the modification of carbon- and glass-fiber-reinforced plastics were summarized. One study involves improving the hygrothermal resistance of carbon-fiber-reinforced polyamide by incorporating both miscible and immiscible components into the polyamide. The other study involves fabricating transparent glass-fiber-reinforced polyamides by investigating miscible and reactive blends. Our recent study on the property modification of composite materials where polymer blends are used as matrices were summarized. Polymer blends have good scalability; however, poor material design criteria is a critical defect in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms, and hygrothermal resistant CFRP and transparent GFRP using polymer blends as matrix were obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
期刊最新文献
Surface orientation of amphiphilic block copolymers via thermal annealing Improvement in the toughness and compatibility of poly(lactic acid)/starch acetoacetate through reactive melt-kneading with amine-modified silicone Rapid and highly efficient recombination of crosslinking points in hydrogels generated via the template polymerization of dynamic covalent three-dimensional nanoparticle crosslinkers Synthesis and two-dimensional ordering of asymmetrically polymer–brush–decorated cellulose nanocrystals Review of bioderived and biodegradable polymers/block-copolymers and their biomedical and electronic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1