在认知范围内绘制老年人高双任务步态成本的神经基质。

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Brain Structure & Function Pub Date : 2025-01-04 DOI:10.1007/s00429-024-02873-6
Pauline Ali, Mickaël Dinomais, Matthieu Labriffe, Frederico Pieruccini-Faria, Manuel Montero-Odasso, Robert Bartha, Cédric Annweiler
{"title":"在认知范围内绘制老年人高双任务步态成本的神经基质。","authors":"Pauline Ali, Mickaël Dinomais, Matthieu Labriffe, Frederico Pieruccini-Faria, Manuel Montero-Odasso, Robert Bartha, Cédric Annweiler","doi":"10.1007/s00429-024-02873-6","DOIUrl":null,"url":null,"abstract":"<p><p>The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline. A total of 336 individuals from the GAIT study cohort were analyzed, including cognitively healthy (N = 122, 71 ± 3.6 years), those with mild cognitive impairment (N = 168, 71 ± 5.3 years), and those with dementia (N = 46, 80 ± 5.7 years). A DTC of 20% or greater was considered to indicate a high level of slowing down while performing successively two verbal tasks (counting backwards task by ones and naming animals). Voxel-based morphometry was employed to investigate differences in gray matter volume (GMV) between groups, which were dichotomized according to the DTC. A high DTC in the whole population (N = 336) was associated with a smaller GMV in the bilateral temporal lobe across both dual-task conditions. A moderation analysis was employed to compare the neural substrate between cognitive status groups. This revealed that the dementia group exhibited an additional cluster located in the left precentral gyrus with GMV loss associated with a high naming animals DTC, in contrast to the other cognitive groups. These results provide new evidence on why dual-task gait capabilities deteriorate in normal and pathological cognitive aging. A more precise understanding of the neural substrate associated with high DTC and cognitive status would help elucidate its use in clinical and research settings.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"25"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.\",\"authors\":\"Pauline Ali, Mickaël Dinomais, Matthieu Labriffe, Frederico Pieruccini-Faria, Manuel Montero-Odasso, Robert Bartha, Cédric Annweiler\",\"doi\":\"10.1007/s00429-024-02873-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline. A total of 336 individuals from the GAIT study cohort were analyzed, including cognitively healthy (N = 122, 71 ± 3.6 years), those with mild cognitive impairment (N = 168, 71 ± 5.3 years), and those with dementia (N = 46, 80 ± 5.7 years). A DTC of 20% or greater was considered to indicate a high level of slowing down while performing successively two verbal tasks (counting backwards task by ones and naming animals). Voxel-based morphometry was employed to investigate differences in gray matter volume (GMV) between groups, which were dichotomized according to the DTC. A high DTC in the whole population (N = 336) was associated with a smaller GMV in the bilateral temporal lobe across both dual-task conditions. A moderation analysis was employed to compare the neural substrate between cognitive status groups. This revealed that the dementia group exhibited an additional cluster located in the left precentral gyrus with GMV loss associated with a high naming animals DTC, in contrast to the other cognitive groups. These results provide new evidence on why dual-task gait capabilities deteriorate in normal and pathological cognitive aging. A more precise understanding of the neural substrate associated with high DTC and cognitive status would help elucidate its use in clinical and research settings.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 1\",\"pages\":\"25\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02873-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02873-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

步态的双重任务成本(DTC)是一种易于获得且具有成本效益的测试,可以帮助识别患有认知能力下降和痴呆的个体。然而,其神经基质尚未被广泛描述。本研究旨在探讨认知衰退频谱中老年人高DTC的神经基础。步态研究队列共分析了336名个体,包括认知健康者(N = 122, 71±3.6岁),轻度认知障碍者(N = 168, 71±5.3岁)和痴呆者(N = 46, 80±5.7岁)。DTC达到或超过20%被认为表明在连续执行两项口头任务(依次倒数任务和命名动物)时速度会减慢。采用基于体素的形态测量法研究各组灰质体积(GMV)的差异,并根据DTC进行二分类。在整个人群中,高DTC (N = 336)与双任务条件下双侧颞叶GMV较小相关。采用适度分析比较认知状态组间的神经基质。这表明,与其他认知组相比,痴呆组表现出位于左中央前回的额外簇,GMV丢失与高命名动物DTC相关。这些结果为为什么双任务步态能力在正常和病理性认知衰老中恶化提供了新的证据。更精确地了解与高DTC和认知状态相关的神经基质将有助于阐明其在临床和研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.

The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline. A total of 336 individuals from the GAIT study cohort were analyzed, including cognitively healthy (N = 122, 71 ± 3.6 years), those with mild cognitive impairment (N = 168, 71 ± 5.3 years), and those with dementia (N = 46, 80 ± 5.7 years). A DTC of 20% or greater was considered to indicate a high level of slowing down while performing successively two verbal tasks (counting backwards task by ones and naming animals). Voxel-based morphometry was employed to investigate differences in gray matter volume (GMV) between groups, which were dichotomized according to the DTC. A high DTC in the whole population (N = 336) was associated with a smaller GMV in the bilateral temporal lobe across both dual-task conditions. A moderation analysis was employed to compare the neural substrate between cognitive status groups. This revealed that the dementia group exhibited an additional cluster located in the left precentral gyrus with GMV loss associated with a high naming animals DTC, in contrast to the other cognitive groups. These results provide new evidence on why dual-task gait capabilities deteriorate in normal and pathological cognitive aging. A more precise understanding of the neural substrate associated with high DTC and cognitive status would help elucidate its use in clinical and research settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
期刊最新文献
Enlargement of the human prefrontal cortex and brain mentalizing network: anatomically homogenous cross-species brain transformation. The expression of transcription factors in the human fetal subthalamic nucleus suggests its origin from the first hypothalamic prosomere. ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction. Physiological fingerprinting of audiovisual warnings in assisted driving conditions: an investigation of fMRI and peripheral physiological indicators. Basal forebrain innervation of the amygdala: an anatomical and computational exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1