Xiaodan Chu, Xuan Chen, Man Guo, Xinyue Li, Zhihai Qu, Peiling Li
{"title":"IGSF8损害子痫前期滋养细胞的迁移、侵袭和血管生成。","authors":"Xiaodan Chu, Xuan Chen, Man Guo, Xinyue Li, Zhihai Qu, Peiling Li","doi":"10.1016/j.yexcr.2025.114405","DOIUrl":null,"url":null,"abstract":"<div><div>Insufficient trophoblast cell infiltration is implicated in the progression of preeclampsia (PE). The immunoglobulin superfamily member 8 (IGSF8) has been shown to promote cell migration, invasion, and epithelial mesenchymal transition (EMT). However, the specific impact of IGSF8 on trophoblast cells in PE has not been definitively demonstrated. To address this, placental tissues from PE patients and normal subjects was collected. A PE-like rat model was established by administering L-NAME (60 mg/kg) intragastrically to pregnant rats from the 10th to the 19th day of gestation. Knockdown and overexpression plasmids of IGSF8 were transfected into JEG-3 cells for further experiments. Clinical samples indicated impaired spiral artery remodeling, and high IGSF8 expression in the placental tissues of PE patients. PE rats exhibited increased mean arterial pressure, elevated 24-h urine protein levels, higher abortion rates, and decreased placental and fetal weight compared to rats of sham group. Failure of physiological transformation of spiral arteries was observed in PE rats, along with increased IGSF8 expression. IGSF8 overexpression inhibited JEG-3 cell migration, invasion and EMT, as well as reduced release of VEGF in JEG-3 cells, impairing HUVEC tube formation. mRNA-sequencing analysis of JEG-3 cells transfected with shIGSF8 showed differentially expressed genes related to angiogenesis, and mesenchymal cell differentiation, with IGSF8 knockdown being associated with the activation of pathways involved in blood vessel development and cell migration. Overall, this study suggests that IGSF8 plays a role in the development of PE and provides new insights for potential treatments.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"445 1","pages":"Article 114405"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IGSF8 impairs migration and invasion of trophoblast cells and angiogenesis in preeclampsia\",\"authors\":\"Xiaodan Chu, Xuan Chen, Man Guo, Xinyue Li, Zhihai Qu, Peiling Li\",\"doi\":\"10.1016/j.yexcr.2025.114405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Insufficient trophoblast cell infiltration is implicated in the progression of preeclampsia (PE). The immunoglobulin superfamily member 8 (IGSF8) has been shown to promote cell migration, invasion, and epithelial mesenchymal transition (EMT). However, the specific impact of IGSF8 on trophoblast cells in PE has not been definitively demonstrated. To address this, placental tissues from PE patients and normal subjects was collected. A PE-like rat model was established by administering L-NAME (60 mg/kg) intragastrically to pregnant rats from the 10th to the 19th day of gestation. Knockdown and overexpression plasmids of IGSF8 were transfected into JEG-3 cells for further experiments. Clinical samples indicated impaired spiral artery remodeling, and high IGSF8 expression in the placental tissues of PE patients. PE rats exhibited increased mean arterial pressure, elevated 24-h urine protein levels, higher abortion rates, and decreased placental and fetal weight compared to rats of sham group. Failure of physiological transformation of spiral arteries was observed in PE rats, along with increased IGSF8 expression. IGSF8 overexpression inhibited JEG-3 cell migration, invasion and EMT, as well as reduced release of VEGF in JEG-3 cells, impairing HUVEC tube formation. mRNA-sequencing analysis of JEG-3 cells transfected with shIGSF8 showed differentially expressed genes related to angiogenesis, and mesenchymal cell differentiation, with IGSF8 knockdown being associated with the activation of pathways involved in blood vessel development and cell migration. Overall, this study suggests that IGSF8 plays a role in the development of PE and provides new insights for potential treatments.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"445 1\",\"pages\":\"Article 114405\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725000011\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725000011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
IGSF8 impairs migration and invasion of trophoblast cells and angiogenesis in preeclampsia
Insufficient trophoblast cell infiltration is implicated in the progression of preeclampsia (PE). The immunoglobulin superfamily member 8 (IGSF8) has been shown to promote cell migration, invasion, and epithelial mesenchymal transition (EMT). However, the specific impact of IGSF8 on trophoblast cells in PE has not been definitively demonstrated. To address this, placental tissues from PE patients and normal subjects was collected. A PE-like rat model was established by administering L-NAME (60 mg/kg) intragastrically to pregnant rats from the 10th to the 19th day of gestation. Knockdown and overexpression plasmids of IGSF8 were transfected into JEG-3 cells for further experiments. Clinical samples indicated impaired spiral artery remodeling, and high IGSF8 expression in the placental tissues of PE patients. PE rats exhibited increased mean arterial pressure, elevated 24-h urine protein levels, higher abortion rates, and decreased placental and fetal weight compared to rats of sham group. Failure of physiological transformation of spiral arteries was observed in PE rats, along with increased IGSF8 expression. IGSF8 overexpression inhibited JEG-3 cell migration, invasion and EMT, as well as reduced release of VEGF in JEG-3 cells, impairing HUVEC tube formation. mRNA-sequencing analysis of JEG-3 cells transfected with shIGSF8 showed differentially expressed genes related to angiogenesis, and mesenchymal cell differentiation, with IGSF8 knockdown being associated with the activation of pathways involved in blood vessel development and cell migration. Overall, this study suggests that IGSF8 plays a role in the development of PE and provides new insights for potential treatments.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.