Wan-Ting Zhao, Karl-Heinz Herrmann, Weiwei Wei, Martin Krämer, Uta Dahmen, Jürgen R Reichenbach
{"title":"可靠和可重复的大鼠肝脏多ti动脉自旋标记灌注成像的质量保证方案。","authors":"Wan-Ting Zhao, Karl-Heinz Herrmann, Weiwei Wei, Martin Krämer, Uta Dahmen, Jürgen R Reichenbach","doi":"10.1007/s10334-024-01223-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To establish an arterial spin labeling (ASL) protocol for rat livers that improves data reliability and reproducibility for perfusion quantification.</p><p><strong>Methods: </strong>This study used respiratory-gated, single-slice, FAIR-based ASL imaging with multiple inversion times (TI) in rat livers. Quality assurance measures included: (1) introduction of mechanical ventilation to ensure consistent respiratory cycles by controlling the respiratory rate (45 bpm), tidal volume (10 ml/kg), and inspiration: expiration ratio (I:E ratio, 1:2), (2) optimization of the trigger window for consistent trigger points, and (3) use of fit residual map and coefficient of variance as metrics to assess data quality. We compared image quality, perfusion maps, and fit residual maps between mechanically ventilated and non-ventilated animals, as well as repeated ASL measurements (session = 4 per animal) in two mechanically ventilated animals.</p><p><strong>Results: </strong>Perfusion measurements over multiple sessions in mechanically ventilated rats exhibited low perfusion data variability and high reproducibility both within and between liver lobes. Image quality and perfusion maps were significantly improved in mechanically ventilated animals compared to non-ventilated animals.</p><p><strong>Discussion: </strong>The implementation of mechanical ventilation and optimized quality assurance protocols enhanced the reliability and reproducibility of FAIR-based multi-TI-ASL imaging in rat livers. Our findings demonstrate these measures as a robust approach for achieving consistent liver perfusion quantification in preclinical settings.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quality assurance protocol for reliable and reproducible multi-TI arterial spin labeling perfusion imaging in rat livers.\",\"authors\":\"Wan-Ting Zhao, Karl-Heinz Herrmann, Weiwei Wei, Martin Krämer, Uta Dahmen, Jürgen R Reichenbach\",\"doi\":\"10.1007/s10334-024-01223-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To establish an arterial spin labeling (ASL) protocol for rat livers that improves data reliability and reproducibility for perfusion quantification.</p><p><strong>Methods: </strong>This study used respiratory-gated, single-slice, FAIR-based ASL imaging with multiple inversion times (TI) in rat livers. Quality assurance measures included: (1) introduction of mechanical ventilation to ensure consistent respiratory cycles by controlling the respiratory rate (45 bpm), tidal volume (10 ml/kg), and inspiration: expiration ratio (I:E ratio, 1:2), (2) optimization of the trigger window for consistent trigger points, and (3) use of fit residual map and coefficient of variance as metrics to assess data quality. We compared image quality, perfusion maps, and fit residual maps between mechanically ventilated and non-ventilated animals, as well as repeated ASL measurements (session = 4 per animal) in two mechanically ventilated animals.</p><p><strong>Results: </strong>Perfusion measurements over multiple sessions in mechanically ventilated rats exhibited low perfusion data variability and high reproducibility both within and between liver lobes. Image quality and perfusion maps were significantly improved in mechanically ventilated animals compared to non-ventilated animals.</p><p><strong>Discussion: </strong>The implementation of mechanical ventilation and optimized quality assurance protocols enhanced the reliability and reproducibility of FAIR-based multi-TI-ASL imaging in rat livers. Our findings demonstrate these measures as a robust approach for achieving consistent liver perfusion quantification in preclinical settings.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01223-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01223-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A quality assurance protocol for reliable and reproducible multi-TI arterial spin labeling perfusion imaging in rat livers.
Objective: To establish an arterial spin labeling (ASL) protocol for rat livers that improves data reliability and reproducibility for perfusion quantification.
Methods: This study used respiratory-gated, single-slice, FAIR-based ASL imaging with multiple inversion times (TI) in rat livers. Quality assurance measures included: (1) introduction of mechanical ventilation to ensure consistent respiratory cycles by controlling the respiratory rate (45 bpm), tidal volume (10 ml/kg), and inspiration: expiration ratio (I:E ratio, 1:2), (2) optimization of the trigger window for consistent trigger points, and (3) use of fit residual map and coefficient of variance as metrics to assess data quality. We compared image quality, perfusion maps, and fit residual maps between mechanically ventilated and non-ventilated animals, as well as repeated ASL measurements (session = 4 per animal) in two mechanically ventilated animals.
Results: Perfusion measurements over multiple sessions in mechanically ventilated rats exhibited low perfusion data variability and high reproducibility both within and between liver lobes. Image quality and perfusion maps were significantly improved in mechanically ventilated animals compared to non-ventilated animals.
Discussion: The implementation of mechanical ventilation and optimized quality assurance protocols enhanced the reliability and reproducibility of FAIR-based multi-TI-ASL imaging in rat livers. Our findings demonstrate these measures as a robust approach for achieving consistent liver perfusion quantification in preclinical settings.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.