Chris M Kallweit, Adrian J Y Chee, Billy Y S Yiu, Sean D Peterson, Alfred C H Yu
{"title":"用于超声和光学流量测量的双模态流模。","authors":"Chris M Kallweit, Adrian J Y Chee, Billy Y S Yiu, Sean D Peterson, Alfred C H Yu","doi":"10.1088/1361-6560/ada5a3","DOIUrl":null,"url":null,"abstract":"<p><p>As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling. The hydrogel's optical attenuation {1.56 dB cm<sup>-1</sup>with 95% confidence interval (CI) of [1.512 1.608]}, refractive index {1.337, CI: [1.340 1.333]}, acoustic attenuation {0.038 dB/(cm × MHz<i><sup>b</sup></i>), CI: [0.0368 0.0403]; frequency dependent factor of 1.321, CI: [1.296 1.346]}, and speed of sound {1523.6 m s<sup>-1</sup>, CI: [1523.8 1523.4]} were found to be suitable for PIV and ultrasound flow measurements. As an application demonstration, a bimodal flow phantom with spiral lumen was fabricated and used in simultaneous flow measurements with PIV and ultrasound color flow imaging (CFI). Velocity fields and profiles were compared between the two modalities under a constant flow rate (2.5 ml s<sup>-1</sup>). CFI was found to overestimate flow speed compared to the PIV measurements, with a 14%, 10%, and 6% difference between PIV and ultrasound for the 60°, 45°, and 30° angles measured. These results demonstrate the new phantom's feasibility in enabling performance validation of ultrasound flow mapping tools.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-modality flow phantom for ultrasound and optical flow measurements.\",\"authors\":\"Chris M Kallweit, Adrian J Y Chee, Billy Y S Yiu, Sean D Peterson, Alfred C H Yu\",\"doi\":\"10.1088/1361-6560/ada5a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling. The hydrogel's optical attenuation {1.56 dB cm<sup>-1</sup>with 95% confidence interval (CI) of [1.512 1.608]}, refractive index {1.337, CI: [1.340 1.333]}, acoustic attenuation {0.038 dB/(cm × MHz<i><sup>b</sup></i>), CI: [0.0368 0.0403]; frequency dependent factor of 1.321, CI: [1.296 1.346]}, and speed of sound {1523.6 m s<sup>-1</sup>, CI: [1523.8 1523.4]} were found to be suitable for PIV and ultrasound flow measurements. As an application demonstration, a bimodal flow phantom with spiral lumen was fabricated and used in simultaneous flow measurements with PIV and ultrasound color flow imaging (CFI). Velocity fields and profiles were compared between the two modalities under a constant flow rate (2.5 ml s<sup>-1</sup>). CFI was found to overestimate flow speed compared to the PIV measurements, with a 14%, 10%, and 6% difference between PIV and ultrasound for the 60°, 45°, and 30° angles measured. These results demonstrate the new phantom's feasibility in enabling performance validation of ultrasound flow mapping tools.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ada5a3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada5a3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Dual-modality flow phantom for ultrasound and optical flow measurements.
As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling. The hydrogel's optical attenuation {1.56 dB cm-1with 95% confidence interval (CI) of [1.512 1.608]}, refractive index {1.337, CI: [1.340 1.333]}, acoustic attenuation {0.038 dB/(cm × MHzb), CI: [0.0368 0.0403]; frequency dependent factor of 1.321, CI: [1.296 1.346]}, and speed of sound {1523.6 m s-1, CI: [1523.8 1523.4]} were found to be suitable for PIV and ultrasound flow measurements. As an application demonstration, a bimodal flow phantom with spiral lumen was fabricated and used in simultaneous flow measurements with PIV and ultrasound color flow imaging (CFI). Velocity fields and profiles were compared between the two modalities under a constant flow rate (2.5 ml s-1). CFI was found to overestimate flow speed compared to the PIV measurements, with a 14%, 10%, and 6% difference between PIV and ultrasound for the 60°, 45°, and 30° angles measured. These results demonstrate the new phantom's feasibility in enabling performance validation of ultrasound flow mapping tools.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry