ARSACS:临床特征、病理生理和ips衍生模型。

IF 2.7 3区 医学 Q3 NEUROSCIENCES Cerebellum Pub Date : 2025-01-03 DOI:10.1007/s12311-024-01777-9
Ikhlass Haj Salem, Mathieu Blais, Valeria M Zuluaga-Sánchez, Laurence Rouleau, Esther B E Becker, Nicolas Dupré
{"title":"ARSACS:临床特征、病理生理和ips衍生模型。","authors":"Ikhlass Haj Salem, Mathieu Blais, Valeria M Zuluaga-Sánchez, Laurence Rouleau, Esther B E Becker, Nicolas Dupré","doi":"10.1007/s12311-024-01777-9","DOIUrl":null,"url":null,"abstract":"<p><p>Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide. Prominent features include cerebellar ataxia, pyramidal spasticity, and neuropathy. Neuropathological findings revealed cerebellar atrophy of the superior cerebellar vermis and the anterior vermis associated with Purkinje cell death, pyramidal degeneration, cortical atrophy, loss of motor neurons, and demyelinating neuropathy. No effective therapy is available for ARSACS patients but, in the last two decades, there have been significant advances in our understanding of the disease. New approaches in ARSACS, such as the reprogramming of induced pluripotent stem cells derived from patients, open exciting perspectives of discoveries. Several research questions are now emerging. Here, we review the clinical features of ARSACS as well as the cerebellar aspects of the disease, with an emphasis on recent fields of investigation.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 1","pages":"24"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARSACS: Clinical Features, Pathophysiology and iPS-Derived Models.\",\"authors\":\"Ikhlass Haj Salem, Mathieu Blais, Valeria M Zuluaga-Sánchez, Laurence Rouleau, Esther B E Becker, Nicolas Dupré\",\"doi\":\"10.1007/s12311-024-01777-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide. Prominent features include cerebellar ataxia, pyramidal spasticity, and neuropathy. Neuropathological findings revealed cerebellar atrophy of the superior cerebellar vermis and the anterior vermis associated with Purkinje cell death, pyramidal degeneration, cortical atrophy, loss of motor neurons, and demyelinating neuropathy. No effective therapy is available for ARSACS patients but, in the last two decades, there have been significant advances in our understanding of the disease. New approaches in ARSACS, such as the reprogramming of induced pluripotent stem cells derived from patients, open exciting perspectives of discoveries. Several research questions are now emerging. Here, we review the clinical features of ARSACS as well as the cerebellar aspects of the disease, with an emphasis on recent fields of investigation.</p>\",\"PeriodicalId\":50706,\"journal\":{\"name\":\"Cerebellum\",\"volume\":\"24 1\",\"pages\":\"24\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebellum\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12311-024-01777-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-024-01777-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

常染色体隐性痉挛性共济失调(ARSACS)是一种由SACS基因突变引起的早发性神经退行性疾病。前两个突变是20年前在法裔加拿大人群中发现的。这种疾病现在被认为是世界上最常见的隐性共济失调之一。突出的特征包括小脑共济失调、锥体痉挛和神经病变。神经病理学结果显示,小脑上蚓和前蚓萎缩与浦肯野细胞死亡、锥体变性、皮质萎缩、运动神经元丧失和脱髓鞘神经病有关。ARSACS患者没有有效的治疗方法,但在过去的二十年中,我们对这种疾病的了解有了重大进展。ARSACS的新方法,如来自患者的诱导多能干细胞的重编程,打开了令人兴奋的发现前景。现在出现了几个研究问题。在这里,我们回顾了ARSACS的临床特征以及该疾病的小脑方面,并重点介绍了最近的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARSACS: Clinical Features, Pathophysiology and iPS-Derived Models.

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide. Prominent features include cerebellar ataxia, pyramidal spasticity, and neuropathy. Neuropathological findings revealed cerebellar atrophy of the superior cerebellar vermis and the anterior vermis associated with Purkinje cell death, pyramidal degeneration, cortical atrophy, loss of motor neurons, and demyelinating neuropathy. No effective therapy is available for ARSACS patients but, in the last two decades, there have been significant advances in our understanding of the disease. New approaches in ARSACS, such as the reprogramming of induced pluripotent stem cells derived from patients, open exciting perspectives of discoveries. Several research questions are now emerging. Here, we review the clinical features of ARSACS as well as the cerebellar aspects of the disease, with an emphasis on recent fields of investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
期刊最新文献
Emerging Deep Brain Stimulation Targets in the Cerebellum for Tremor. Assessment of Peripheral Neuropathy Using Current Perception Threshold Measurement in Patients with Spinocerebellar Ataxia Type 3. Tremor in the Age of Omics: An Overview of the Transcriptomic Landscape of Essential Tremor. Spontaneous Nystagmus Violating the Alexander's Law: Neural Substrates and Mechanisms. Causally Mapping the Cerebellum in Children and Young Adults: from Motor to Cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1