A. M. Matthews, W. D. Cotton, W. M. Peters, L. Marchetti, T. H. Jarrett, J. J. Condon, J. M. van der Hulst, M. Moloko
{"title":"正常恒星形成星系周围的星系尺度磁化风","authors":"A. M. Matthews, W. D. Cotton, W. M. Peters, L. Marchetti, T. H. Jarrett, J. J. Condon, J. M. van der Hulst, M. Moloko","doi":"10.3847/2041-8213/ada252","DOIUrl":null,"url":null,"abstract":"Galaxy formation theory identifies superwinds as a key regulator of star formation rates, galaxy growth, and chemical enrichment. Thermal and radiation pressure are known to drive galactic-scale winds in dusty starbursting galaxies (e.g., M82), but modern numerical simulations have recently highlighted that cosmic-ray (CR)–driven winds may be especially important in normal galaxies with modest star formation rate surface densities. However, CR-driven winds have yet to be conclusively observed—leaving significant uncertainty in their detailed microphysics. We present MeerKAT radio continuum and H <sc>i</sc> spectral-line observations of one such normal galaxy, NGC 1532; a nearby (<italic toggle=\"yes\">D</italic> ~ 15 Mpc) and nearly edge-on (<italic toggle=\"yes\">i</italic> ≳ 80°) spiral galaxy tidally interacting with its smaller elliptical companion, NGC 1531. We find magnetized, highly ordered radio-continuum loops extending ~10 kpc above and below the disk, visibly connecting discrete star-forming regions in the disk to the center. The deep MeerKAT H <sc>i</sc> observations place an upper limit on the column density of neutral gas coincident with the outflow of <italic toggle=\"yes\">N</italic><sub>H I</sub> ≲ 3 × 10<sup>19</sup> cm<sup>−2</sup>. Unlike previously observed outflows—for which ejected gas and dust can be traced across multiple wavelengths—the loops in NGC 1532 show no detectable signs of dust or gas coincident with the radio emission far from the disk. We explore multiple possible mechanisms for driving this magnetic wind and favor an explanation where CR pressure plays a significant role in launching these outflows.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Galactic-scale Magnetized Wind around a Normal Star-forming Galaxy\",\"authors\":\"A. M. Matthews, W. D. Cotton, W. M. Peters, L. Marchetti, T. H. Jarrett, J. J. Condon, J. M. van der Hulst, M. Moloko\",\"doi\":\"10.3847/2041-8213/ada252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Galaxy formation theory identifies superwinds as a key regulator of star formation rates, galaxy growth, and chemical enrichment. Thermal and radiation pressure are known to drive galactic-scale winds in dusty starbursting galaxies (e.g., M82), but modern numerical simulations have recently highlighted that cosmic-ray (CR)–driven winds may be especially important in normal galaxies with modest star formation rate surface densities. However, CR-driven winds have yet to be conclusively observed—leaving significant uncertainty in their detailed microphysics. We present MeerKAT radio continuum and H <sc>i</sc> spectral-line observations of one such normal galaxy, NGC 1532; a nearby (<italic toggle=\\\"yes\\\">D</italic> ~ 15 Mpc) and nearly edge-on (<italic toggle=\\\"yes\\\">i</italic> ≳ 80°) spiral galaxy tidally interacting with its smaller elliptical companion, NGC 1531. We find magnetized, highly ordered radio-continuum loops extending ~10 kpc above and below the disk, visibly connecting discrete star-forming regions in the disk to the center. The deep MeerKAT H <sc>i</sc> observations place an upper limit on the column density of neutral gas coincident with the outflow of <italic toggle=\\\"yes\\\">N</italic><sub>H I</sub> ≲ 3 × 10<sup>19</sup> cm<sup>−2</sup>. Unlike previously observed outflows—for which ejected gas and dust can be traced across multiple wavelengths—the loops in NGC 1532 show no detectable signs of dust or gas coincident with the radio emission far from the disk. We explore multiple possible mechanisms for driving this magnetic wind and favor an explanation where CR pressure plays a significant role in launching these outflows.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ada252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ada252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
星系形成理论认为超风是恒星形成率、星系生长和化学富集的关键调节因素。众所周知,热压和辐射压是尘埃星爆星系(如 M82)中星系尺度风的驱动力,但现代数值模拟最近强调,宇宙射线(CR)驱动的风在恒星形成率表面密度适中的正常星系中可能尤其重要。然而,CR 驱动的风尚未被最终观测到,因此其详细的微观物理特性还存在很大的不确定性。我们展示了对这样一个正常星系--NGC 1532 的 MeerKAT 射电连续波和 H i 谱线观测结果;NGC 1532 是一个邻近(D ~ 15 Mpc)、近边缘(i ≳ 80°)的螺旋星系,与其较小的椭圆伴星系 NGC 1531 发生潮汐相互作用。我们发现磁化的、高度有序的射电连续环在圆盘上下延伸了 ~10 kpc,明显地将圆盘中离散的恒星形成区与中心连接起来。通过对 MeerKAT H i 的深度观测,中性气体柱密度的上限与 NH I ≲ 3 × 1019 cm-2 的外流相吻合。与之前观测到的外流不同,NGC 1532中的环带在远离磁盘的射电辐射中没有发现可检测到的尘埃或气体的迹象,而喷出的气体和尘埃可以在多个波长上被追踪到。我们探讨了驱动这种磁风的多种可能机制,并倾向于一种解释,即CR压力在启动这些外溢流时发挥了重要作用。
A Galactic-scale Magnetized Wind around a Normal Star-forming Galaxy
Galaxy formation theory identifies superwinds as a key regulator of star formation rates, galaxy growth, and chemical enrichment. Thermal and radiation pressure are known to drive galactic-scale winds in dusty starbursting galaxies (e.g., M82), but modern numerical simulations have recently highlighted that cosmic-ray (CR)–driven winds may be especially important in normal galaxies with modest star formation rate surface densities. However, CR-driven winds have yet to be conclusively observed—leaving significant uncertainty in their detailed microphysics. We present MeerKAT radio continuum and H i spectral-line observations of one such normal galaxy, NGC 1532; a nearby (D ~ 15 Mpc) and nearly edge-on (i ≳ 80°) spiral galaxy tidally interacting with its smaller elliptical companion, NGC 1531. We find magnetized, highly ordered radio-continuum loops extending ~10 kpc above and below the disk, visibly connecting discrete star-forming regions in the disk to the center. The deep MeerKAT H i observations place an upper limit on the column density of neutral gas coincident with the outflow of NH I ≲ 3 × 1019 cm−2. Unlike previously observed outflows—for which ejected gas and dust can be traced across multiple wavelengths—the loops in NGC 1532 show no detectable signs of dust or gas coincident with the radio emission far from the disk. We explore multiple possible mechanisms for driving this magnetic wind and favor an explanation where CR pressure plays a significant role in launching these outflows.