用于苯丙酮尿诊断的电化学传感器集成实验室- cd系统。

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2025-01-06 DOI:10.1039/d4lc00912f
Ipek Akyilmaz, Dilan Celebi-Birand, Naim Yagiz Demir, Deniz Bas, Caglar Elbuken, Memed Duman
{"title":"用于苯丙酮尿诊断的电化学传感器集成实验室- cd系统。","authors":"Ipek Akyilmaz, Dilan Celebi-Birand, Naim Yagiz Demir, Deniz Bas, Caglar Elbuken, Memed Duman","doi":"10.1039/d4lc00912f","DOIUrl":null,"url":null,"abstract":"<p><p>Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention. Moreover, continuous monitoring of blood Phe levels is indispensable for prognosis, requiring a robust and reliable monitoring system. This study presents an automated lab-on-a-CD-based system for early diagnosis and monitoring of PKU treatment. This miniaturised system contains CD-shaped disposable cartridges, a mini centrifuge, and an electrochemical sensing unit. Modified screen-printed gold electrodes were used for the electrochemical measurements in cartridges. Electrode modification was conducted by electrochemical graphene oxide reduction and deposition on the electrode surface, which increased the sensitivity of the measurement 1.5 fold. The system used amperometric detection to measure Phe in the blood through oxidation of NAD<sup>+</sup> to NADH by the enzyme phenylalanine dehydrogenase. The limit of detection (LOD), limit of quantification (LOQ), and sensitivity of the system were 0.0524, 0.1587 mg dL<sup>-1</sup> and 0.3338 μA mg<sup>-1</sup> dL, respectively, within the 0-20 mg dL<sup>-1</sup> measurement range (<i>R</i><sup>2</sup> = 0.9955). The performance of the lab-on-a-CD system was compared to the gold standard HPLC method. The accuracy was 83.1% for HPLC and 84.1% for the lab-on-a-CD system. In conclusion, this study successfully developed a portable diagnostic device for rapid (under 20 min), accurate and highly sensitive detection of Phe in whole blood.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electrochemical sensor integrated lab-on-a-CD system for phenylketonuria diagnostics.\",\"authors\":\"Ipek Akyilmaz, Dilan Celebi-Birand, Naim Yagiz Demir, Deniz Bas, Caglar Elbuken, Memed Duman\",\"doi\":\"10.1039/d4lc00912f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention. Moreover, continuous monitoring of blood Phe levels is indispensable for prognosis, requiring a robust and reliable monitoring system. This study presents an automated lab-on-a-CD-based system for early diagnosis and monitoring of PKU treatment. This miniaturised system contains CD-shaped disposable cartridges, a mini centrifuge, and an electrochemical sensing unit. Modified screen-printed gold electrodes were used for the electrochemical measurements in cartridges. Electrode modification was conducted by electrochemical graphene oxide reduction and deposition on the electrode surface, which increased the sensitivity of the measurement 1.5 fold. The system used amperometric detection to measure Phe in the blood through oxidation of NAD<sup>+</sup> to NADH by the enzyme phenylalanine dehydrogenase. The limit of detection (LOD), limit of quantification (LOQ), and sensitivity of the system were 0.0524, 0.1587 mg dL<sup>-1</sup> and 0.3338 μA mg<sup>-1</sup> dL, respectively, within the 0-20 mg dL<sup>-1</sup> measurement range (<i>R</i><sup>2</sup> = 0.9955). The performance of the lab-on-a-CD system was compared to the gold standard HPLC method. The accuracy was 83.1% for HPLC and 84.1% for the lab-on-a-CD system. In conclusion, this study successfully developed a portable diagnostic device for rapid (under 20 min), accurate and highly sensitive detection of Phe in whole blood.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00912f\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00912f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

苯丙酮尿症(PKU)以苯丙氨酸羟化酶(PAH)基因的常染色体隐性突变为特征。PAH酶活性受损导致苯丙氨酸(Phe)及其代谢物在血液中积累,从而破坏中枢神经系统并导致精神运动迟缓。早期诊断对及时干预至关重要。此外,持续监测血液Phe水平对于预后是必不可少的,需要一个强大可靠的监测系统。本研究提出了一种基于cd的自动化实验室系统,用于PKU治疗的早期诊断和监测。这个小型化的系统包含cd形状的一次性药筒,一个微型离心机和一个电化学传感单元。采用改良的丝网印刷金电极,在墨盒中进行电化学测量。通过电化学氧化石墨烯还原和沉积电极表面对电极进行修饰,使测量灵敏度提高1.5倍。该系统使用安培检测法通过苯丙氨酸脱氢酶将NAD+氧化为NADH来测量血液中的Phe。在0 ~ 20 mg dL-1的检测范围内,系统的检出限(LOD)为0.0524,定量限(LOQ)为0.1587 mg dL-1,灵敏度为0.3338 μA mg-1 dL (R2 = 0.9955)。并与金标准高效液相色谱法进行了比较。HPLC法和lab-on-a-CD法的准确度分别为83.1%和84.1%。综上所述,本研究成功开发了一种快速(20 min以内)、准确、高灵敏度检测全血Phe的便携式诊断装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An electrochemical sensor integrated lab-on-a-CD system for phenylketonuria diagnostics.

Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention. Moreover, continuous monitoring of blood Phe levels is indispensable for prognosis, requiring a robust and reliable monitoring system. This study presents an automated lab-on-a-CD-based system for early diagnosis and monitoring of PKU treatment. This miniaturised system contains CD-shaped disposable cartridges, a mini centrifuge, and an electrochemical sensing unit. Modified screen-printed gold electrodes were used for the electrochemical measurements in cartridges. Electrode modification was conducted by electrochemical graphene oxide reduction and deposition on the electrode surface, which increased the sensitivity of the measurement 1.5 fold. The system used amperometric detection to measure Phe in the blood through oxidation of NAD+ to NADH by the enzyme phenylalanine dehydrogenase. The limit of detection (LOD), limit of quantification (LOQ), and sensitivity of the system were 0.0524, 0.1587 mg dL-1 and 0.3338 μA mg-1 dL, respectively, within the 0-20 mg dL-1 measurement range (R2 = 0.9955). The performance of the lab-on-a-CD system was compared to the gold standard HPLC method. The accuracy was 83.1% for HPLC and 84.1% for the lab-on-a-CD system. In conclusion, this study successfully developed a portable diagnostic device for rapid (under 20 min), accurate and highly sensitive detection of Phe in whole blood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Advances of dual-organ and multi-organ systems for gut, lung, skin and liver models in absorption and metabolism studies. Soft, wearable, microfluidic system for fluorometric analysis of loss of amino acids through eccrine sweat. Advances in modeling periodontal host-microbe interactions: insights from organotypic and organ-on-chip systems. Dimensional analysis meets AI for non-Newtonian droplet generation. iDEP-based single-cell isolation in a two-dimensional array of chambers addressed by easy-to-align wireless electrodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1