大肠杆菌热休克反应在小热休克二十年后的复苏是一个关键但独特的行为。

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biological Chemistry Pub Date : 2025-01-07 DOI:10.1515/hsz-2024-0140
Tsukumi Miwa, Hideki Taguchi
{"title":"大肠杆菌热休克反应在小热休克二十年后的复苏是一个关键但独特的行为。","authors":"Tsukumi Miwa, Hideki Taguchi","doi":"10.1515/hsz-2024-0140","DOIUrl":null,"url":null,"abstract":"<p><p>The heat stress response is an essential defense mechanism in all organisms. Heat shock proteins (Hsps) are produced in response to thermal stress, with their expression levels regulated by heat shock transcription factors. In <i>Escherichia coli,</i> the key transcription factor σ<sup>32</sup> positively regulates Hsp expression. Studies from over two decades ago revealed that σ<sup>32</sup> abundance is negatively controlled under normal conditions, mainly through degradation mechanisms involving DnaK, GroEL, and FtsH. Beyond this established mechanism, recent findings indicate that a small heat shock protein IbpA also plays a role in the translational regulation of σ<sup>32</sup>, adding a new layer to the established model. This review highlights the role of a new actor, IbpA, which strongly suppresses σ<sup>32</sup> expression under non-stress conditions and markedly increases it during heat shock.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revival of the <i>Escherichia coli</i> heat shock response after two decades with a small Hsp in a critical but distinct act.\",\"authors\":\"Tsukumi Miwa, Hideki Taguchi\",\"doi\":\"10.1515/hsz-2024-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The heat stress response is an essential defense mechanism in all organisms. Heat shock proteins (Hsps) are produced in response to thermal stress, with their expression levels regulated by heat shock transcription factors. In <i>Escherichia coli,</i> the key transcription factor σ<sup>32</sup> positively regulates Hsp expression. Studies from over two decades ago revealed that σ<sup>32</sup> abundance is negatively controlled under normal conditions, mainly through degradation mechanisms involving DnaK, GroEL, and FtsH. Beyond this established mechanism, recent findings indicate that a small heat shock protein IbpA also plays a role in the translational regulation of σ<sup>32</sup>, adding a new layer to the established model. This review highlights the role of a new actor, IbpA, which strongly suppresses σ<sup>32</sup> expression under non-stress conditions and markedly increases it during heat shock.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2024-0140\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2024-0140","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

热应激反应是所有生物的基本防御机制。热休克蛋白(Hsps)是在热应激条件下产生的,其表达水平受热休克转录因子的调控。在大肠杆菌中,关键转录因子σ32正调控Hsp的表达。二十多年前的研究表明,在正常条件下,σ32丰度主要通过DnaK、GroEL和FtsH等降解机制负向控制。在此基础上,最近的研究表明,一个小的热休克蛋白IbpA也参与了σ32的翻译调控,为已经建立的模型增加了新的层次。在非应激条件下,IbpA能强烈抑制σ32的表达,而在热休克条件下,IbpA能显著提高σ32的表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revival of the Escherichia coli heat shock response after two decades with a small Hsp in a critical but distinct act.

The heat stress response is an essential defense mechanism in all organisms. Heat shock proteins (Hsps) are produced in response to thermal stress, with their expression levels regulated by heat shock transcription factors. In Escherichia coli, the key transcription factor σ32 positively regulates Hsp expression. Studies from over two decades ago revealed that σ32 abundance is negatively controlled under normal conditions, mainly through degradation mechanisms involving DnaK, GroEL, and FtsH. Beyond this established mechanism, recent findings indicate that a small heat shock protein IbpA also plays a role in the translational regulation of σ32, adding a new layer to the established model. This review highlights the role of a new actor, IbpA, which strongly suppresses σ32 expression under non-stress conditions and markedly increases it during heat shock.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
期刊最新文献
MitoStores: stress-induced aggregation of mitochondrial proteins. Revival of the Escherichia coli heat shock response after two decades with a small Hsp in a critical but distinct act. Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking. Analysis of kallikrein-related peptidase 7 (KLK7) autolysis reveals novel protease and cytokine substrates. Carnosic acid prevents heat stress-induced oxidative damage by regulating heat-shock proteins and apoptotic proteins in mouse testis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1