{"title":"他克莫司,细胞色素P450,器官移植受者与食物变量的相互作用当前和全面的审查。","authors":"Zahra Tolou-Ghamari","doi":"10.2174/0113892002328742241210102522","DOIUrl":null,"url":null,"abstract":"<p><p>The well-established calcineurin inhibitor, tacrolimus, as an immunosuppressive agent, is widely prescribed after organ transplantation. Cytochrome P450 (CYP 450) isoforms are responsible for the metabolism of many features associated with food parameters like phytochemicals, juices, and fruits. This review article summarizes the findings of previous studies to help predict the efficacy or side effects of tacrolimus in the presence of food variables. From the commencement of databases associated with the topic of interest to 26 October 2024, all relevant articles were searched through PubMed, Scopus, and Web of Science. The suggested therapeutic range for tacrolimus trough concentration (C) was reported as 5-15 ng/ml blood. Tacrolimus interaction with food variables could significantly change C after organ transplantation. For example, grapefruit juice could increase tacrolimus C due to CYP enzyme inhibition. Toxicity such as nephrotoxicity could result from turmeric and other herbal or food products. By inhibiting tacrolimus-metabolizing enzymes and transporters, a high intake of vegetables could increase the risk of adverse effects. Secondary metabolites of vegetables could lead to toxicity in patients with tacrolimus. Furthermore, grapefruit juice, citrus fruits, turmeric, and pomegranate juice could change clinical pharmacokinetics parameters such as Tmax, Cmax, AUC, and C of tacrolimus after organ transplantation. Bioavailability of tacrolimus might be decreased by induction of the CYP450 system and P-gp efflux pump due to cranberry, rooibos tea, and boldo. Increased inhibitory effect on CYP450 system and/or P-gp efflux pump by grapefruit juice, schisandra, berberine, turmeric, pomegranate juice, pomelo, and ginger could increase bioavailability of tacrolimus. A vigilant immunosuppressive strategy accompanied by scheduled therapeutic drug monitoring is recommended before and after transplant surgery.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tacrolimus, Cytochrome P450, Interactions with Food Variables in Organ Transplant Recipients; A Current and Comprehensive Review.\",\"authors\":\"Zahra Tolou-Ghamari\",\"doi\":\"10.2174/0113892002328742241210102522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The well-established calcineurin inhibitor, tacrolimus, as an immunosuppressive agent, is widely prescribed after organ transplantation. Cytochrome P450 (CYP 450) isoforms are responsible for the metabolism of many features associated with food parameters like phytochemicals, juices, and fruits. This review article summarizes the findings of previous studies to help predict the efficacy or side effects of tacrolimus in the presence of food variables. From the commencement of databases associated with the topic of interest to 26 October 2024, all relevant articles were searched through PubMed, Scopus, and Web of Science. The suggested therapeutic range for tacrolimus trough concentration (C) was reported as 5-15 ng/ml blood. Tacrolimus interaction with food variables could significantly change C after organ transplantation. For example, grapefruit juice could increase tacrolimus C due to CYP enzyme inhibition. Toxicity such as nephrotoxicity could result from turmeric and other herbal or food products. By inhibiting tacrolimus-metabolizing enzymes and transporters, a high intake of vegetables could increase the risk of adverse effects. Secondary metabolites of vegetables could lead to toxicity in patients with tacrolimus. Furthermore, grapefruit juice, citrus fruits, turmeric, and pomegranate juice could change clinical pharmacokinetics parameters such as Tmax, Cmax, AUC, and C of tacrolimus after organ transplantation. Bioavailability of tacrolimus might be decreased by induction of the CYP450 system and P-gp efflux pump due to cranberry, rooibos tea, and boldo. Increased inhibitory effect on CYP450 system and/or P-gp efflux pump by grapefruit juice, schisandra, berberine, turmeric, pomegranate juice, pomelo, and ginger could increase bioavailability of tacrolimus. A vigilant immunosuppressive strategy accompanied by scheduled therapeutic drug monitoring is recommended before and after transplant surgery.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892002328742241210102522\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002328742241210102522","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
钙调磷酸酶抑制剂他克莫司作为一种免疫抑制剂,在器官移植后被广泛使用。细胞色素P450 (cyp450)异构体负责与植物化学物质、果汁和水果等食物参数相关的许多特征的代谢。这篇综述文章总结了以前的研究结果,以帮助预测他克莫司在存在食物变量的情况下的疗效或副作用。从与感兴趣的主题相关的数据库启动到2024年10月26日,通过PubMed, Scopus和Web of Science检索了所有相关文章。他克莫司谷浓度(C)的建议治疗范围为5-15 ng/ml血。他克莫司与食物相互作用可显著改变器官移植后C。例如,由于CYP酶抑制,葡萄柚汁可以增加他克莫司C。姜黄和其他草药或食品可能导致肾毒性。通过抑制他克莫司代谢酶和转运蛋白,大量摄入蔬菜可能会增加不良反应的风险。蔬菜的次生代谢物可能导致他克莫司患者中毒。葡萄柚汁、柑橘类水果、姜黄汁和石榴汁可改变器官移植后他克莫司的Tmax、Cmax、AUC、C等临床药代动力学参数。他克莫司的生物利用度可能因蔓越莓、路易波士茶和boldo引起的CYP450系统和P-gp外排泵的诱导而降低。柚子汁、五味子、小檗碱、姜黄、石榴汁、柚子和生姜对CYP450系统和/或P-gp外排泵的抑制作用增强,可提高他克莫司的生物利用度。建议在移植手术前后采取警惕的免疫抑制策略,并定期进行治疗药物监测。
Tacrolimus, Cytochrome P450, Interactions with Food Variables in Organ Transplant Recipients; A Current and Comprehensive Review.
The well-established calcineurin inhibitor, tacrolimus, as an immunosuppressive agent, is widely prescribed after organ transplantation. Cytochrome P450 (CYP 450) isoforms are responsible for the metabolism of many features associated with food parameters like phytochemicals, juices, and fruits. This review article summarizes the findings of previous studies to help predict the efficacy or side effects of tacrolimus in the presence of food variables. From the commencement of databases associated with the topic of interest to 26 October 2024, all relevant articles were searched through PubMed, Scopus, and Web of Science. The suggested therapeutic range for tacrolimus trough concentration (C) was reported as 5-15 ng/ml blood. Tacrolimus interaction with food variables could significantly change C after organ transplantation. For example, grapefruit juice could increase tacrolimus C due to CYP enzyme inhibition. Toxicity such as nephrotoxicity could result from turmeric and other herbal or food products. By inhibiting tacrolimus-metabolizing enzymes and transporters, a high intake of vegetables could increase the risk of adverse effects. Secondary metabolites of vegetables could lead to toxicity in patients with tacrolimus. Furthermore, grapefruit juice, citrus fruits, turmeric, and pomegranate juice could change clinical pharmacokinetics parameters such as Tmax, Cmax, AUC, and C of tacrolimus after organ transplantation. Bioavailability of tacrolimus might be decreased by induction of the CYP450 system and P-gp efflux pump due to cranberry, rooibos tea, and boldo. Increased inhibitory effect on CYP450 system and/or P-gp efflux pump by grapefruit juice, schisandra, berberine, turmeric, pomegranate juice, pomelo, and ginger could increase bioavailability of tacrolimus. A vigilant immunosuppressive strategy accompanied by scheduled therapeutic drug monitoring is recommended before and after transplant surgery.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.