{"title":"基于脑电图的跨学科被动音乐音高感知,使用深度学习模型。","authors":"Qiang Meng, Lan Tian, Guoyang Liu, Xue Zhang","doi":"10.1007/s11571-024-10196-9","DOIUrl":null,"url":null,"abstract":"<p><p>Pitch plays an essential role in music perception and forms the fundamental component of melodic interpretation. However, objectively detecting and decoding brain responses to musical pitch perception across subjects remains to be explored. In this study, we employed electroencephalography (EEG) as an objective measure to obtain the neural responses of musical pitch perception. The EEG signals from 34 subjects under hearing violin sounds at pitches G3 and B6 were collected with an efficient passive Go/No-Go paradigm. The lightweight modified EEGNet model was proposed for EEG-based pitch classification. Specifically, within-subject modeling with the modified EEGNet model was performed to construct individually optimized models. Subsequently, based on the within-subject model pool, a classifier ensemble (CE) method was adopted to construct the cross-subject model. Additionally, we analyzed the optimal time window of brain decoding for pitch perception in the EEG data and discussed the interpretability of these models. The experiment results show that the modified EEGNet model achieved an average classification accuracy of 77% for within-subject modeling, significantly outperforming other compared methods. Meanwhile, the proposed CE method achieved an average accuracy of 74% for cross-subject modeling, significantly exceeding the chance-level accuracy of 50%. Furthermore, we found that the optimal EEG data window for the pitch perception lies 0.4 to 0.9 s onset. These promising results demonstrate that the proposed methods can be effectively used in the objective assessment of pitch perception and have generalization ability in cross-subject modeling.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"6"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699146/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG-based cross-subject passive music pitch perception using deep learning models.\",\"authors\":\"Qiang Meng, Lan Tian, Guoyang Liu, Xue Zhang\",\"doi\":\"10.1007/s11571-024-10196-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pitch plays an essential role in music perception and forms the fundamental component of melodic interpretation. However, objectively detecting and decoding brain responses to musical pitch perception across subjects remains to be explored. In this study, we employed electroencephalography (EEG) as an objective measure to obtain the neural responses of musical pitch perception. The EEG signals from 34 subjects under hearing violin sounds at pitches G3 and B6 were collected with an efficient passive Go/No-Go paradigm. The lightweight modified EEGNet model was proposed for EEG-based pitch classification. Specifically, within-subject modeling with the modified EEGNet model was performed to construct individually optimized models. Subsequently, based on the within-subject model pool, a classifier ensemble (CE) method was adopted to construct the cross-subject model. Additionally, we analyzed the optimal time window of brain decoding for pitch perception in the EEG data and discussed the interpretability of these models. The experiment results show that the modified EEGNet model achieved an average classification accuracy of 77% for within-subject modeling, significantly outperforming other compared methods. Meanwhile, the proposed CE method achieved an average accuracy of 74% for cross-subject modeling, significantly exceeding the chance-level accuracy of 50%. Furthermore, we found that the optimal EEG data window for the pitch perception lies 0.4 to 0.9 s onset. These promising results demonstrate that the proposed methods can be effectively used in the objective assessment of pitch perception and have generalization ability in cross-subject modeling.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"6\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10196-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10196-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
EEG-based cross-subject passive music pitch perception using deep learning models.
Pitch plays an essential role in music perception and forms the fundamental component of melodic interpretation. However, objectively detecting and decoding brain responses to musical pitch perception across subjects remains to be explored. In this study, we employed electroencephalography (EEG) as an objective measure to obtain the neural responses of musical pitch perception. The EEG signals from 34 subjects under hearing violin sounds at pitches G3 and B6 were collected with an efficient passive Go/No-Go paradigm. The lightweight modified EEGNet model was proposed for EEG-based pitch classification. Specifically, within-subject modeling with the modified EEGNet model was performed to construct individually optimized models. Subsequently, based on the within-subject model pool, a classifier ensemble (CE) method was adopted to construct the cross-subject model. Additionally, we analyzed the optimal time window of brain decoding for pitch perception in the EEG data and discussed the interpretability of these models. The experiment results show that the modified EEGNet model achieved an average classification accuracy of 77% for within-subject modeling, significantly outperforming other compared methods. Meanwhile, the proposed CE method achieved an average accuracy of 74% for cross-subject modeling, significantly exceeding the chance-level accuracy of 50%. Furthermore, we found that the optimal EEG data window for the pitch perception lies 0.4 to 0.9 s onset. These promising results demonstrate that the proposed methods can be effectively used in the objective assessment of pitch perception and have generalization ability in cross-subject modeling.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.