[通过关注人类iPS细胞衍生心肌细胞的线粒体质量来评估抗癌药物的心脏毒性风险]。

Yuri Kato, Yuya Nakamura, Moe Kondo, Yasunari Kanda, Motohiro Nishida
{"title":"[通过关注人类iPS细胞衍生心肌细胞的线粒体质量来评估抗癌药物的心脏毒性风险]。","authors":"Yuri Kato, Yuya Nakamura, Moe Kondo, Yasunari Kanda, Motohiro Nishida","doi":"10.1254/fpj.24056","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, a variety of anticancer agents are used in the treatment of cancer. Since anticancer agents are used continuously over a long time, they carry the risk of side effects. One of the major side effects is cardiac dysfunction. For example, doxorubicin, an anthracycline-type anticancer agent, is clinically restricted because of its dose-dependent cardiotoxicity. Cardiotoxicity includes decreased ejection fraction, arrhythmias, and congestive heart failure, all of which are associated with high mortality rates. Therefore, it is important to assess the risk of cardiotoxicity of anticancer agents in advance. Cardiomyocytes require energy to beat and retain an abundance of mitochondria. We established quantitative measurements of mitochondrial length and respiratory activities using cardiomyocytes. We found that exposure of human iPS cell-derived cardiomyocytes (hiPSC-CMs) to anticancer agents with reported cardiotoxicity enhanced mitochondrial hyperfission and the oxygen consumption rate was significantly reduced. Knockdown of dynamin-related protein 1 (Drp1), mitochondrial fission-accelerating GTP-binding protein, suppressed mitochondrial hyperfission in hiPSC-CMs. This indicates that visualizing mitochondrial functions in hiPSC-CMs will be helpful in assessing the risk of cardiotoxicity caused by anticancer agents and that maintaining mitochondrial quality will become a new strategy to reduce anticancer agents-induced cardiotoxicity. In this review, we present the evaluation of cardiotoxicity targeting mitochondrial quality in anticancer agents, using osimertinib, a non-small cell lung cancer drug, as an example.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"9-12"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Cardiotoxicity risk assessment of anticancer drugs by focusing on mitochondrial quality of human iPS cell-derived cardiomyocytes].\",\"authors\":\"Yuri Kato, Yuya Nakamura, Moe Kondo, Yasunari Kanda, Motohiro Nishida\",\"doi\":\"10.1254/fpj.24056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, a variety of anticancer agents are used in the treatment of cancer. Since anticancer agents are used continuously over a long time, they carry the risk of side effects. One of the major side effects is cardiac dysfunction. For example, doxorubicin, an anthracycline-type anticancer agent, is clinically restricted because of its dose-dependent cardiotoxicity. Cardiotoxicity includes decreased ejection fraction, arrhythmias, and congestive heart failure, all of which are associated with high mortality rates. Therefore, it is important to assess the risk of cardiotoxicity of anticancer agents in advance. Cardiomyocytes require energy to beat and retain an abundance of mitochondria. We established quantitative measurements of mitochondrial length and respiratory activities using cardiomyocytes. We found that exposure of human iPS cell-derived cardiomyocytes (hiPSC-CMs) to anticancer agents with reported cardiotoxicity enhanced mitochondrial hyperfission and the oxygen consumption rate was significantly reduced. Knockdown of dynamin-related protein 1 (Drp1), mitochondrial fission-accelerating GTP-binding protein, suppressed mitochondrial hyperfission in hiPSC-CMs. This indicates that visualizing mitochondrial functions in hiPSC-CMs will be helpful in assessing the risk of cardiotoxicity caused by anticancer agents and that maintaining mitochondrial quality will become a new strategy to reduce anticancer agents-induced cardiotoxicity. In this review, we present the evaluation of cardiotoxicity targeting mitochondrial quality in anticancer agents, using osimertinib, a non-small cell lung cancer drug, as an example.</p>\",\"PeriodicalId\":12208,\"journal\":{\"name\":\"Folia Pharmacologica Japonica\",\"volume\":\"160 1\",\"pages\":\"9-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Pharmacologica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/fpj.24056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,各种抗癌药物被用于治疗癌症。由于抗癌药物是长期连续使用的,因此有产生副作用的风险。其中一个主要的副作用是心功能障碍。例如,阿霉素是一种蒽环类抗癌药物,由于其剂量依赖性的心脏毒性,在临床上受到限制。心脏毒性包括射血分数降低、心律失常和充血性心力衰竭,所有这些都与高死亡率相关。因此,提前评估抗癌药物的心脏毒性风险是很重要的。心肌细胞需要能量来跳动和保持线粒体的丰富。我们利用心肌细胞建立了线粒体长度和呼吸活动的定量测量。我们发现,人类iPS细胞衍生的心肌细胞(hiPSC-CMs)暴露于具有心脏毒性的抗癌药物中,可增强线粒体高分裂,并显著降低耗氧率。在hiPSC-CMs中,动力蛋白相关蛋白1 (Drp1),线粒体分裂加速gtp结合蛋白的敲低,抑制了线粒体高分裂。这表明在hiPSC-CMs中可视化线粒体功能将有助于评估抗癌药物引起的心脏毒性风险,保持线粒体质量将成为减少抗癌药物引起的心脏毒性的新策略。在这篇综述中,我们以非小细胞肺癌药物奥西替尼为例,介绍了抗癌药物中针对线粒体质量的心脏毒性评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Cardiotoxicity risk assessment of anticancer drugs by focusing on mitochondrial quality of human iPS cell-derived cardiomyocytes].

Currently, a variety of anticancer agents are used in the treatment of cancer. Since anticancer agents are used continuously over a long time, they carry the risk of side effects. One of the major side effects is cardiac dysfunction. For example, doxorubicin, an anthracycline-type anticancer agent, is clinically restricted because of its dose-dependent cardiotoxicity. Cardiotoxicity includes decreased ejection fraction, arrhythmias, and congestive heart failure, all of which are associated with high mortality rates. Therefore, it is important to assess the risk of cardiotoxicity of anticancer agents in advance. Cardiomyocytes require energy to beat and retain an abundance of mitochondria. We established quantitative measurements of mitochondrial length and respiratory activities using cardiomyocytes. We found that exposure of human iPS cell-derived cardiomyocytes (hiPSC-CMs) to anticancer agents with reported cardiotoxicity enhanced mitochondrial hyperfission and the oxygen consumption rate was significantly reduced. Knockdown of dynamin-related protein 1 (Drp1), mitochondrial fission-accelerating GTP-binding protein, suppressed mitochondrial hyperfission in hiPSC-CMs. This indicates that visualizing mitochondrial functions in hiPSC-CMs will be helpful in assessing the risk of cardiotoxicity caused by anticancer agents and that maintaining mitochondrial quality will become a new strategy to reduce anticancer agents-induced cardiotoxicity. In this review, we present the evaluation of cardiotoxicity targeting mitochondrial quality in anticancer agents, using osimertinib, a non-small cell lung cancer drug, as an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
期刊最新文献
[Deep brain imaging by using GRIN lens].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1