水黾(Gerris argentatus)在水面上身体转动的运动学和方向性。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY Insect Science Pub Date : 2025-01-06 DOI:10.1111/1744-7917.13486
Javad Meshkani, Hamed Rajabi, Alexander Kovalev, Stanislav N Gorb
{"title":"水黾(Gerris argentatus)在水面上身体转动的运动学和方向性。","authors":"Javad Meshkani, Hamed Rajabi, Alexander Kovalev, Stanislav N Gorb","doi":"10.1111/1744-7917.13486","DOIUrl":null,"url":null,"abstract":"<p><p>Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control. This paper investigates the intricate coordination of leg movements essential for initiating and sustaining turning maneuvers in water striders. We elucidate the distinct roles of each leg in modulating posture and stability during turns, with a focus on the pivotal role of the midlegs in maintaining directional movement. Through analysis of leg accelerations, decelerations, and load distribution, we unveil the spatiotemporal dynamics governing successful turns. Our findings reveal refined turning strategies employed by water striders in varying situations, from narrow to wide turns, characterized by adaptations in their locomotor system, particularly in the widening of the sculling field. Additionally, we report the phenomenon of reverse sculling, a novel escape tactic of water striders. By shedding light on the maneuverability of water striders, this study contributes to a deeper understanding of animal locomotion strategies in aquatic environments.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics and directionality of body turning in water striders (Gerris argentatus) on the water surface.\",\"authors\":\"Javad Meshkani, Hamed Rajabi, Alexander Kovalev, Stanislav N Gorb\",\"doi\":\"10.1111/1744-7917.13486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control. This paper investigates the intricate coordination of leg movements essential for initiating and sustaining turning maneuvers in water striders. We elucidate the distinct roles of each leg in modulating posture and stability during turns, with a focus on the pivotal role of the midlegs in maintaining directional movement. Through analysis of leg accelerations, decelerations, and load distribution, we unveil the spatiotemporal dynamics governing successful turns. Our findings reveal refined turning strategies employed by water striders in varying situations, from narrow to wide turns, characterized by adaptations in their locomotor system, particularly in the widening of the sculling field. Additionally, we report the phenomenon of reverse sculling, a novel escape tactic of water striders. By shedding light on the maneuverability of water striders, this study contributes to a deeper understanding of animal locomotion strategies in aquatic environments.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13486\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13486","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水黾栖息在水的弹性表面张力膜上,与其他水生生物共享环境。它们的生存很大程度上依赖于快速的机动性和围绕漂浮障碍物的导航能力,这有助于它们探索栖息地和逃离潜在的威胁。它们的高敏捷性是基于执行精确转弯的能力,从而实现有效的方向控制。本文研究了复杂的腿部运动的协调至关重要的启动和维持转向机动在水黾。我们阐明了每条腿在转弯时调节姿势和稳定性的独特作用,重点是中腿在保持方向运动中的关键作用。通过对腿部加速、减速和负荷分布的分析,我们揭示了控制成功转弯的时空动力学。我们的研究结果揭示了水黾在不同情况下采用的精细转弯策略,从窄转弯到宽转弯,其特点是运动系统的适应性,特别是在扩大划水范围时。此外,我们报告了水黾的一种新的逃生策略——反向划水现象。通过揭示水黾的机动性,本研究有助于加深对水生环境中动物运动策略的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinematics and directionality of body turning in water striders (Gerris argentatus) on the water surface.

Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control. This paper investigates the intricate coordination of leg movements essential for initiating and sustaining turning maneuvers in water striders. We elucidate the distinct roles of each leg in modulating posture and stability during turns, with a focus on the pivotal role of the midlegs in maintaining directional movement. Through analysis of leg accelerations, decelerations, and load distribution, we unveil the spatiotemporal dynamics governing successful turns. Our findings reveal refined turning strategies employed by water striders in varying situations, from narrow to wide turns, characterized by adaptations in their locomotor system, particularly in the widening of the sculling field. Additionally, we report the phenomenon of reverse sculling, a novel escape tactic of water striders. By shedding light on the maneuverability of water striders, this study contributes to a deeper understanding of animal locomotion strategies in aquatic environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
期刊最新文献
An RPA-CRISPR/Cas12a based platform for rapid, sensitive, and visual detection of Apis mellifera filamentous virus. Characterization of the microbial communities in Tunisian wild populations of the Mediterranean fruit fly (Ceratitis capitata) and their implications for the future implementation of the sterile insect technique. Exploring marking methods for the predatory hoverfly Sphaerophoria rueppellii (Diptera: Syrphidae). Bioinsecticide control and enzymatic responses in Spodoptera frugiperda. Evaluation of two candidate molecules-TCTP and cecropin-on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1