Cong Hong Nhat Nguyen, Dinh Truong Nguyen, Trung Hieu Le, Lam Son Le, Nga Hang Thi Phan, Thi-Thao-Van Nguyen, Nguyen Van Tiep, Ekaterina Korneeva, Anh Tuyen Luu, My Uyen Dao, Minh Tuan Nguyen Dinh, Chinh Chien Nguyen
{"title":"ceox锚定β-Ni(OH)2纳米片在泡沫镍上的电催化葡萄糖氧化反应高效节能制氢。","authors":"Cong Hong Nhat Nguyen, Dinh Truong Nguyen, Trung Hieu Le, Lam Son Le, Nga Hang Thi Phan, Thi-Thao-Van Nguyen, Nguyen Van Tiep, Ekaterina Korneeva, Anh Tuyen Luu, My Uyen Dao, Minh Tuan Nguyen Dinh, Chinh Chien Nguyen","doi":"10.1039/d4na00892h","DOIUrl":null,"url":null,"abstract":"<p><p>Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized <i>via</i> a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> interfacial contact and numerous surface defects (<i>e.g.</i>, oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm<sup>-2</sup>. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694650/pdf/","citationCount":"0","resultStr":"{\"title\":\"CeO <sub><i>x</i></sub> -anchored β-Ni(OH)<sub>2</sub> nanosheets onto nickel foam for efficient energy-saving hydrogen production <i>via</i> an electrocatalytic glucose oxidation reaction.\",\"authors\":\"Cong Hong Nhat Nguyen, Dinh Truong Nguyen, Trung Hieu Le, Lam Son Le, Nga Hang Thi Phan, Thi-Thao-Van Nguyen, Nguyen Van Tiep, Ekaterina Korneeva, Anh Tuyen Luu, My Uyen Dao, Minh Tuan Nguyen Dinh, Chinh Chien Nguyen\",\"doi\":\"10.1039/d4na00892h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized <i>via</i> a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> interfacial contact and numerous surface defects (<i>e.g.</i>, oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm<sup>-2</sup>. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4na00892h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00892h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
电解葡萄糖氧化在节能制氢方面引起了极大的兴趣。然而,高电荷转移电阻和低效的活性中心已被认为是电化学性能差的主要问题。在这项研究中,我们首次提供了一种新颖的富含缺陷的CeO x /β-Ni(OH)2复合纳米片装饰镍泡沫电催化剂(表示为Ce@NF-GA),该催化剂是在甘油和乙酸的共同参与下通过独特的水热方法合成的。所采用的表征揭示了紧密的CeO x /β-Ni(OH)2界面接触和许多表面缺陷(例如氧空位)。这些特性显著地增强了电催化葡萄糖氧化反应。事实上,获得的Ce@NF-GA催化剂需要1.31 V的低电位才能达到10 mA cm-2的电流密度。此外,Ce@NF-GA在连续3个工作循环中表现出高电荷传输能力和稳定性,对应于对氢气生产的出色的法拉第效率~ 100%。这种新型材料的探索为ce基电催化剂在节能制氢-偶联葡萄糖氧化反应中的应用开辟了一条潜在途径。
CeO x -anchored β-Ni(OH)2 nanosheets onto nickel foam for efficient energy-saving hydrogen production via an electrocatalytic glucose oxidation reaction.
Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO x /β-Ni(OH)2 composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized via a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO x /β-Ni(OH)2 interfacial contact and numerous surface defects (e.g., oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm-2. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.