ceox锚定β-Ni(OH)2纳米片在泡沫镍上的电催化葡萄糖氧化反应高效节能制氢。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Advances Pub Date : 2024-12-16 DOI:10.1039/d4na00892h
Cong Hong Nhat Nguyen, Dinh Truong Nguyen, Trung Hieu Le, Lam Son Le, Nga Hang Thi Phan, Thi-Thao-Van Nguyen, Nguyen Van Tiep, Ekaterina Korneeva, Anh Tuyen Luu, My Uyen Dao, Minh Tuan Nguyen Dinh, Chinh Chien Nguyen
{"title":"ceox锚定β-Ni(OH)2纳米片在泡沫镍上的电催化葡萄糖氧化反应高效节能制氢。","authors":"Cong Hong Nhat Nguyen, Dinh Truong Nguyen, Trung Hieu Le, Lam Son Le, Nga Hang Thi Phan, Thi-Thao-Van Nguyen, Nguyen Van Tiep, Ekaterina Korneeva, Anh Tuyen Luu, My Uyen Dao, Minh Tuan Nguyen Dinh, Chinh Chien Nguyen","doi":"10.1039/d4na00892h","DOIUrl":null,"url":null,"abstract":"<p><p>Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized <i>via</i> a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> interfacial contact and numerous surface defects (<i>e.g.</i>, oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm<sup>-2</sup>. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694650/pdf/","citationCount":"0","resultStr":"{\"title\":\"CeO <sub><i>x</i></sub> -anchored β-Ni(OH)<sub>2</sub> nanosheets onto nickel foam for efficient energy-saving hydrogen production <i>via</i> an electrocatalytic glucose oxidation reaction.\",\"authors\":\"Cong Hong Nhat Nguyen, Dinh Truong Nguyen, Trung Hieu Le, Lam Son Le, Nga Hang Thi Phan, Thi-Thao-Van Nguyen, Nguyen Van Tiep, Ekaterina Korneeva, Anh Tuyen Luu, My Uyen Dao, Minh Tuan Nguyen Dinh, Chinh Chien Nguyen\",\"doi\":\"10.1039/d4na00892h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized <i>via</i> a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO <sub><i>x</i></sub> /β-Ni(OH)<sub>2</sub> interfacial contact and numerous surface defects (<i>e.g.</i>, oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm<sup>-2</sup>. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4na00892h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00892h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电解葡萄糖氧化在节能制氢方面引起了极大的兴趣。然而,高电荷转移电阻和低效的活性中心已被认为是电化学性能差的主要问题。在这项研究中,我们首次提供了一种新颖的富含缺陷的CeO x /β-Ni(OH)2复合纳米片装饰镍泡沫电催化剂(表示为Ce@NF-GA),该催化剂是在甘油和乙酸的共同参与下通过独特的水热方法合成的。所采用的表征揭示了紧密的CeO x /β-Ni(OH)2界面接触和许多表面缺陷(例如氧空位)。这些特性显著地增强了电催化葡萄糖氧化反应。事实上,获得的Ce@NF-GA催化剂需要1.31 V的低电位才能达到10 mA cm-2的电流密度。此外,Ce@NF-GA在连续3个工作循环中表现出高电荷传输能力和稳定性,对应于对氢气生产的出色的法拉第效率~ 100%。这种新型材料的探索为ce基电催化剂在节能制氢-偶联葡萄糖氧化反应中的应用开辟了一条潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CeO x -anchored β-Ni(OH)2 nanosheets onto nickel foam for efficient energy-saving hydrogen production via an electrocatalytic glucose oxidation reaction.

Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO x /β-Ni(OH)2 composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized via a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO x /β-Ni(OH)2 interfacial contact and numerous surface defects (e.g., oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm-2. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
期刊最新文献
Shape-tailored semiconductor dot-in-rods: optimizing CdS-shell growth for enhanced chiroptical properties via the rationalization of the role of temperature and time. Synergetic efficiency: in situ growth of a novel 2D/2D chemically bonded Bi2O3/Cs3Bi2Br9 S-scheme heterostructure for improved photocatalytic performance and stability. Chemical etching of silicon assisted by graphene oxide under negative electric bias. Emerging engineered nanozymes: current status and future perspectives in cancer treatments. Construction of an MXene/MIL Fe-53/ZIF-67 derived bifunctional electrocatalyst for efficient overall water splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1