缺血再灌注后回肠肌丛Pannexin通道的变化及肠动力。

IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Neurogastroenterology and Motility Pub Date : 2025-01-06 DOI:10.1111/nmo.14996
Thaira Thalita Alves Pereira, Cristina Eusébio Mendes, Roberta Figueiroa Souza, Marcos Antônio Ferreira Caetano, Henrique Inhauser Riceti Magalhães, Caroline Bures de Paulo, Ii Sei Watanabe, Patricia Castelucci
{"title":"缺血再灌注后回肠肌丛Pannexin通道的变化及肠动力。","authors":"Thaira Thalita Alves Pereira, Cristina Eusébio Mendes, Roberta Figueiroa Souza, Marcos Antônio Ferreira Caetano, Henrique Inhauser Riceti Magalhães, Caroline Bures de Paulo, Ii Sei Watanabe, Patricia Castelucci","doi":"10.1111/nmo.14996","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.</p><p><strong>Aim: </strong>Study the effects of ileal ischemia and reperfusion (I/R) and PB treatment on myenteric neurons and in rats.</p><p><strong>Methods: </strong>Male Wistar rats were used for I/R induction, the ileal vessels were occluded for 45 min and reperfusion was performed after this time. The Sham groups underwent all surgical procedures without obstruction of the ileal vessels. Animals were euthanized 24 h or 14d post-I/R. The PB group received an injection of PB post-I/R. Ileal segments were collected for immunofluorescence analyses to identify neurons calretinin immunoreactive (-ir) and pannexin-1-ir. Neuronal density (cells/field), area (μm<sup>2</sup>), intestinal motility, and ultrastructural analyses were performed.</p><p><strong>Key results: </strong>The pannexin-1 channel was double-labeled with calretinin-ir neurons. Neuronal density reduced by 21% reduction in calretinin-ir neurons in the I/R 24 h group and recovered 26% in the PB 24 h group. In the 14d group, there was a 23% reduction in calretinin-ir neurons in the I/R 14d group and a recovery of 26% in the PB 14d group. The analysis of the contraction after electrical simulation was lower in the I/R 14 d group and recovered in the PB 14d.</p><p><strong>Conclusions and inferences: </strong>Intestinal I/R affects myenteric neurons and causes morphological and functional changes. PB was able to attenuate the effects of I/R and could constitute a therapeutic tool for intestinal I/R.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e14996"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the Pannexin Channel in Ileum Myenteric Plexus and Intestinal Motility Following Ischemia and Reperfusion.\",\"authors\":\"Thaira Thalita Alves Pereira, Cristina Eusébio Mendes, Roberta Figueiroa Souza, Marcos Antônio Ferreira Caetano, Henrique Inhauser Riceti Magalhães, Caroline Bures de Paulo, Ii Sei Watanabe, Patricia Castelucci\",\"doi\":\"10.1111/nmo.14996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.</p><p><strong>Aim: </strong>Study the effects of ileal ischemia and reperfusion (I/R) and PB treatment on myenteric neurons and in rats.</p><p><strong>Methods: </strong>Male Wistar rats were used for I/R induction, the ileal vessels were occluded for 45 min and reperfusion was performed after this time. The Sham groups underwent all surgical procedures without obstruction of the ileal vessels. Animals were euthanized 24 h or 14d post-I/R. The PB group received an injection of PB post-I/R. Ileal segments were collected for immunofluorescence analyses to identify neurons calretinin immunoreactive (-ir) and pannexin-1-ir. Neuronal density (cells/field), area (μm<sup>2</sup>), intestinal motility, and ultrastructural analyses were performed.</p><p><strong>Key results: </strong>The pannexin-1 channel was double-labeled with calretinin-ir neurons. Neuronal density reduced by 21% reduction in calretinin-ir neurons in the I/R 24 h group and recovered 26% in the PB 24 h group. In the 14d group, there was a 23% reduction in calretinin-ir neurons in the I/R 14d group and a recovery of 26% in the PB 14d group. The analysis of the contraction after electrical simulation was lower in the I/R 14 d group and recovered in the PB 14d.</p><p><strong>Conclusions and inferences: </strong>Intestinal I/R affects myenteric neurons and causes morphological and functional changes. PB was able to attenuate the effects of I/R and could constitute a therapeutic tool for intestinal I/R.</p>\",\"PeriodicalId\":19123,\"journal\":{\"name\":\"Neurogastroenterology and Motility\",\"volume\":\" \",\"pages\":\"e14996\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogastroenterology and Motility\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nmo.14996\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.14996","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肠缺血影响肠神经系统(ENS)的功能。Pannexin-1通道参与细胞通讯和细胞外信号转导。Probenecid (PB)是一种pannexin-1通道抑制剂,可能是治疗肠缺血的潜在药物。目的:研究回肠缺血再灌注(I/R)和PB处理对大鼠肌内神经元的影响。方法:采用雄性Wistar大鼠进行I/R诱导,封闭回肠血管45 min后再灌注。假手术组接受了所有手术,无回肠血管阻塞。动物在i /R后24 h或14d被安乐死。PB组在i /R后注射PB。收集回肠段进行免疫荧光分析,鉴定神经元calretinin immunoreactive (-ir)和pannexin-1-ir。进行神经元密度(细胞/场)、面积(μm2)、肠蠕动和超微结构分析。关键结果:pannexin-1通道被calretinin-ir神经元双重标记。I/R 24 h组calretinin-ir神经元密度降低21%,PB 24 h组恢复26%。在14d组,I/R 14d组calretinin-ir神经元减少23%,PB 14d组恢复26%。电模拟后的收缩分析在I/R 14d组较低,在PB 14d组恢复。结论和推论:肠I/R影响肌神经元,引起形态学和功能改变。PB能减轻肠I/R的影响,可作为治疗肠I/R的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in the Pannexin Channel in Ileum Myenteric Plexus and Intestinal Motility Following Ischemia and Reperfusion.

Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.

Aim: Study the effects of ileal ischemia and reperfusion (I/R) and PB treatment on myenteric neurons and in rats.

Methods: Male Wistar rats were used for I/R induction, the ileal vessels were occluded for 45 min and reperfusion was performed after this time. The Sham groups underwent all surgical procedures without obstruction of the ileal vessels. Animals were euthanized 24 h or 14d post-I/R. The PB group received an injection of PB post-I/R. Ileal segments were collected for immunofluorescence analyses to identify neurons calretinin immunoreactive (-ir) and pannexin-1-ir. Neuronal density (cells/field), area (μm2), intestinal motility, and ultrastructural analyses were performed.

Key results: The pannexin-1 channel was double-labeled with calretinin-ir neurons. Neuronal density reduced by 21% reduction in calretinin-ir neurons in the I/R 24 h group and recovered 26% in the PB 24 h group. In the 14d group, there was a 23% reduction in calretinin-ir neurons in the I/R 14d group and a recovery of 26% in the PB 14d group. The analysis of the contraction after electrical simulation was lower in the I/R 14 d group and recovered in the PB 14d.

Conclusions and inferences: Intestinal I/R affects myenteric neurons and causes morphological and functional changes. PB was able to attenuate the effects of I/R and could constitute a therapeutic tool for intestinal I/R.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurogastroenterology and Motility
Neurogastroenterology and Motility 医学-临床神经学
CiteScore
7.80
自引率
8.60%
发文量
178
审稿时长
3-6 weeks
期刊介绍: Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.
期刊最新文献
Repetitive antegrade contractions on high-resolution manometry: A physiologic pattern related to sustained esophageal distention in Abelchia. Splenectomy prevents brain orexin, ghrelin, or oxytocin but not GLP-1-induced improvement of intestinal barrier function in rats. Role of prokinetics in ineffective esophageal motility: A call for broader consideration and future innovations. Authors' Reply to Letter-Role of Prokinetics in Ineffective Esophageal Motility: A Call for Broader Consideration and Future Innovations. Dumping syndrome: Update on pathophysiology, diagnosis, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1