H&E染色图像和深度学习预测肺鳞癌PD-L1肿瘤阳性评分。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1452563
Qiushi Wang, Xixiang Deng, Pan Huang, Qiang Ma, Lianhua Zhao, Yangyang Feng, Yiying Wang, Yuan Zhao, Yan Chen, Peng Zhong, Peng He, Mingrui Ma, Peng Feng, Hualiang Xiao
{"title":"H&E染色图像和深度学习预测肺鳞癌PD-L1肿瘤阳性评分。","authors":"Qiushi Wang, Xixiang Deng, Pan Huang, Qiang Ma, Lianhua Zhao, Yangyang Feng, Yiying Wang, Yuan Zhao, Yan Chen, Peng Zhong, Peng He, Mingrui Ma, Peng Feng, Hualiang Xiao","doi":"10.3389/frai.2024.1452563","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Detecting programmed death ligand 1 (PD-L1) expression based on immunohistochemical (IHC) staining is an important guide for the treatment of lung cancer with immune checkpoint inhibitors. However, this method has problems such as high staining costs, tumor heterogeneity, and subjective differences among pathologists. Therefore, the application of deep learning models to segment and quantitatively predict PD-L1 expression in digital sections of Hematoxylin and eosin (H&E) stained lung squamous cell carcinoma is of great significance.</p><p><strong>Methods: </strong>We constructed a dataset comprising H&E-stained digital sections of lung squamous cell carcinoma and used a Transformer Unet (TransUnet) deep learning network with an encoder-decoder design to segment PD-L1 negative and positive regions and quantitatively predict the tumor cell positive score (TPS).</p><p><strong>Results: </strong>The results showed that the dice similarity coefficient (DSC) and intersection overunion (IoU) of deep learning for PD-L1 expression segmentation of H&E-stained digital slides of lung squamous cell carcinoma were 80 and 72%, respectively, which were better than the other seven cutting-edge segmentation models. The root mean square error (RMSE) of quantitative prediction TPS was 26.8, and the intra-group correlation coefficients with the gold standard was 0.92 (95% CI: 0.90-0.93), which was better than the consistency between the results of five pathologists and the gold standard.</p><p><strong>Conclusion: </strong>The deep learning model is capable of segmenting and quantitatively predicting PD-L1 expression in H&E-stained digital sections of lung squamous cell carcinoma, which has significant implications for the application and guidance of immune checkpoint inhibitor treatments. And the link to the code is https://github.com/Baron-Huang/PD-L1-prediction-via-HE-image.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1452563"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695341/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of PD-L1 tumor positive score in lung squamous cell carcinoma with H&E staining images and deep learning.\",\"authors\":\"Qiushi Wang, Xixiang Deng, Pan Huang, Qiang Ma, Lianhua Zhao, Yangyang Feng, Yiying Wang, Yuan Zhao, Yan Chen, Peng Zhong, Peng He, Mingrui Ma, Peng Feng, Hualiang Xiao\",\"doi\":\"10.3389/frai.2024.1452563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Detecting programmed death ligand 1 (PD-L1) expression based on immunohistochemical (IHC) staining is an important guide for the treatment of lung cancer with immune checkpoint inhibitors. However, this method has problems such as high staining costs, tumor heterogeneity, and subjective differences among pathologists. Therefore, the application of deep learning models to segment and quantitatively predict PD-L1 expression in digital sections of Hematoxylin and eosin (H&E) stained lung squamous cell carcinoma is of great significance.</p><p><strong>Methods: </strong>We constructed a dataset comprising H&E-stained digital sections of lung squamous cell carcinoma and used a Transformer Unet (TransUnet) deep learning network with an encoder-decoder design to segment PD-L1 negative and positive regions and quantitatively predict the tumor cell positive score (TPS).</p><p><strong>Results: </strong>The results showed that the dice similarity coefficient (DSC) and intersection overunion (IoU) of deep learning for PD-L1 expression segmentation of H&E-stained digital slides of lung squamous cell carcinoma were 80 and 72%, respectively, which were better than the other seven cutting-edge segmentation models. The root mean square error (RMSE) of quantitative prediction TPS was 26.8, and the intra-group correlation coefficients with the gold standard was 0.92 (95% CI: 0.90-0.93), which was better than the consistency between the results of five pathologists and the gold standard.</p><p><strong>Conclusion: </strong>The deep learning model is capable of segmenting and quantitatively predicting PD-L1 expression in H&E-stained digital sections of lung squamous cell carcinoma, which has significant implications for the application and guidance of immune checkpoint inhibitor treatments. And the link to the code is https://github.com/Baron-Huang/PD-L1-prediction-via-HE-image.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1452563\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1452563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1452563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

背景:基于免疫组化(IHC)染色检测程序性死亡配体1 (PD-L1)的表达是免疫检查点抑制剂治疗肺癌的重要指导。但该方法存在染色成本高、肿瘤异质性、病理医师主观差异等问题。因此,应用深度学习模型对苏木精和伊红(H&E)染色肺鳞癌数字切片中PD-L1的表达进行分割和定量预测具有重要意义。方法:我们构建了一个包含h&e染色肺鳞癌数字切片的数据集,并使用具有编码器-解码器设计的Transformer Unet (TransUnet)深度学习网络来分割PD-L1阴性和阳性区域,并定量预测肿瘤细胞阳性评分(TPS)。结果:结果显示,深度学习对肺鳞癌h&e染色数字切片PD-L1表达分割的骰子相似系数(DSC)和交叉过union (IoU)分别为80和72%,优于其他7种前沿分割模型。定量预测TPS的均方根误差(RMSE)为26.8,与金标准的组内相关系数为0.92 (95% CI: 0.90 ~ 0.93),优于5位病理医师结果与金标准的一致性。结论:深度学习模型能够对肺鳞状细胞癌h&e染色数字切片中PD-L1的表达进行分割和定量预测,对免疫检查点抑制剂治疗的应用和指导具有重要意义。代码的链接是https://github.com/Baron-Huang/PD-L1-prediction-via-HE-image。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of PD-L1 tumor positive score in lung squamous cell carcinoma with H&E staining images and deep learning.

Background: Detecting programmed death ligand 1 (PD-L1) expression based on immunohistochemical (IHC) staining is an important guide for the treatment of lung cancer with immune checkpoint inhibitors. However, this method has problems such as high staining costs, tumor heterogeneity, and subjective differences among pathologists. Therefore, the application of deep learning models to segment and quantitatively predict PD-L1 expression in digital sections of Hematoxylin and eosin (H&E) stained lung squamous cell carcinoma is of great significance.

Methods: We constructed a dataset comprising H&E-stained digital sections of lung squamous cell carcinoma and used a Transformer Unet (TransUnet) deep learning network with an encoder-decoder design to segment PD-L1 negative and positive regions and quantitatively predict the tumor cell positive score (TPS).

Results: The results showed that the dice similarity coefficient (DSC) and intersection overunion (IoU) of deep learning for PD-L1 expression segmentation of H&E-stained digital slides of lung squamous cell carcinoma were 80 and 72%, respectively, which were better than the other seven cutting-edge segmentation models. The root mean square error (RMSE) of quantitative prediction TPS was 26.8, and the intra-group correlation coefficients with the gold standard was 0.92 (95% CI: 0.90-0.93), which was better than the consistency between the results of five pathologists and the gold standard.

Conclusion: The deep learning model is capable of segmenting and quantitatively predicting PD-L1 expression in H&E-stained digital sections of lung squamous cell carcinoma, which has significant implications for the application and guidance of immune checkpoint inhibitor treatments. And the link to the code is https://github.com/Baron-Huang/PD-L1-prediction-via-HE-image.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Examining the integration of artificial intelligence in supply chain management from Industry 4.0 to 6.0: a systematic literature review. The technology acceptance model and adopter type analysis in the context of artificial intelligence. An analysis of artificial intelligence automation in digital music streaming platforms for improving consumer subscription responses: a review. Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm. SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1