{"title":"概念引导学习的通用细粒度视觉分类","authors":"Qi Bi;Beichen Zhou;Wei Ji;Gui-Song Xia","doi":"10.1109/TIP.2024.3523802","DOIUrl":null,"url":null,"abstract":"Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images (e.g., street view) and adverse viewpoint (e.g., object re-identification, remote sensing). In such scenarios, the mis-/over- feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at <uri>https://github.com/BiQiWHU/CGL</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"394-409"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Fine-Grained Visual Categorization by Concept Guided Learning\",\"authors\":\"Qi Bi;Beichen Zhou;Wei Ji;Gui-Song Xia\",\"doi\":\"10.1109/TIP.2024.3523802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images (e.g., street view) and adverse viewpoint (e.g., object re-identification, remote sensing). In such scenarios, the mis-/over- feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at <uri>https://github.com/BiQiWHU/CGL</uri>.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"394-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829548/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10829548/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universal Fine-Grained Visual Categorization by Concept Guided Learning
Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images (e.g., street view) and adverse viewpoint (e.g., object re-identification, remote sensing). In such scenarios, the mis-/over- feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at https://github.com/BiQiWHU/CGL.