Cesar de Oliveira Ferreira Silva, Celia Regina Grego, Rodrigo Lilla Manzione, Stanley Robson de Medeiros Oliveira, Gustavo Costa Rodrigues, Cristina Aparecida Gonçalves Rodrigues
{"title":"描述处理低采样和异常值的管理区","authors":"Cesar de Oliveira Ferreira Silva, Celia Regina Grego, Rodrigo Lilla Manzione, Stanley Robson de Medeiros Oliveira, Gustavo Costa Rodrigues, Cristina Aparecida Gonçalves Rodrigues","doi":"10.1007/s11119-024-10218-w","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Management zones (MZs) are the subdivision of a field into a few contiguous homogeneous zones to guide variable-rate application. Delineating MZs can be based on geostatistical or clustering approaches, however, the joint use of these approaches is not usual. Here, we show a joint use of both techniques. The objective of this manuscript is twofold: (1) compare different procedures for creating management zones and (2) determine the relation of the MZs delineated with i) coffee yield maps and ii) the summarizing power of each method for each input variable inside the MZs delineated.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The techniques compared to summary spatial data were: (1) summarizing the variables into a soil fertility index (SFI), (2) the MULTISPATI-PCA technique, and (3) the multivariate Min/Max autocorrelation factors (MAF) approach. Then, clustering methods were applied to perform field partition into binary MZs (grouping lower and higher values of input variables).</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The MAF approach achieved the best field partition regarding clustering metrics (McNemar’s test, Silhouette Score Coefficient, and variance reduction). In this paper we did not use yields as a cluster variable but as a measure of success. MAF also was the best one for separating low- from high-yielding areas over the MZs. The results show that the proposed approach could be effectively used for management zone delineation.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This methodology facilitates evaluating innovative approaches in challenging spatial modeling scenarios, such as low-sampled fields with outliers. A wide range of summarization methods and clustering techniques are available, making this agnostic approach quite interesting for delivering MZ maps. This flexible approach can guide precision nutrient management in low-sampled areas, allowing the joint use of data science tools and agronomical knowledge to delineate variable rate application strategies.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"21 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delineation of management zones dealing with low sampling and outliers\",\"authors\":\"Cesar de Oliveira Ferreira Silva, Celia Regina Grego, Rodrigo Lilla Manzione, Stanley Robson de Medeiros Oliveira, Gustavo Costa Rodrigues, Cristina Aparecida Gonçalves Rodrigues\",\"doi\":\"10.1007/s11119-024-10218-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Management zones (MZs) are the subdivision of a field into a few contiguous homogeneous zones to guide variable-rate application. Delineating MZs can be based on geostatistical or clustering approaches, however, the joint use of these approaches is not usual. Here, we show a joint use of both techniques. The objective of this manuscript is twofold: (1) compare different procedures for creating management zones and (2) determine the relation of the MZs delineated with i) coffee yield maps and ii) the summarizing power of each method for each input variable inside the MZs delineated.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>The techniques compared to summary spatial data were: (1) summarizing the variables into a soil fertility index (SFI), (2) the MULTISPATI-PCA technique, and (3) the multivariate Min/Max autocorrelation factors (MAF) approach. Then, clustering methods were applied to perform field partition into binary MZs (grouping lower and higher values of input variables).</p><h3 data-test=\\\"abstract-sub-heading\\\">Results and discussion</h3><p>The MAF approach achieved the best field partition regarding clustering metrics (McNemar’s test, Silhouette Score Coefficient, and variance reduction). In this paper we did not use yields as a cluster variable but as a measure of success. MAF also was the best one for separating low- from high-yielding areas over the MZs. The results show that the proposed approach could be effectively used for management zone delineation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>This methodology facilitates evaluating innovative approaches in challenging spatial modeling scenarios, such as low-sampled fields with outliers. A wide range of summarization methods and clustering techniques are available, making this agnostic approach quite interesting for delivering MZ maps. This flexible approach can guide precision nutrient management in low-sampled areas, allowing the joint use of data science tools and agronomical knowledge to delineate variable rate application strategies.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10218-w\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10218-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Delineation of management zones dealing with low sampling and outliers
Purpose
Management zones (MZs) are the subdivision of a field into a few contiguous homogeneous zones to guide variable-rate application. Delineating MZs can be based on geostatistical or clustering approaches, however, the joint use of these approaches is not usual. Here, we show a joint use of both techniques. The objective of this manuscript is twofold: (1) compare different procedures for creating management zones and (2) determine the relation of the MZs delineated with i) coffee yield maps and ii) the summarizing power of each method for each input variable inside the MZs delineated.
Methods
The techniques compared to summary spatial data were: (1) summarizing the variables into a soil fertility index (SFI), (2) the MULTISPATI-PCA technique, and (3) the multivariate Min/Max autocorrelation factors (MAF) approach. Then, clustering methods were applied to perform field partition into binary MZs (grouping lower and higher values of input variables).
Results and discussion
The MAF approach achieved the best field partition regarding clustering metrics (McNemar’s test, Silhouette Score Coefficient, and variance reduction). In this paper we did not use yields as a cluster variable but as a measure of success. MAF also was the best one for separating low- from high-yielding areas over the MZs. The results show that the proposed approach could be effectively used for management zone delineation.
Conclusions
This methodology facilitates evaluating innovative approaches in challenging spatial modeling scenarios, such as low-sampled fields with outliers. A wide range of summarization methods and clustering techniques are available, making this agnostic approach quite interesting for delivering MZ maps. This flexible approach can guide precision nutrient management in low-sampled areas, allowing the joint use of data science tools and agronomical knowledge to delineate variable rate application strategies.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.