全固体废弃物中碳化强化机理的比较分析:钢渣与电石渣

Qi Zhang, Pan Feng, Xuyan Shen, Yuxi Cai, Houru Zhen, Zhichao Liu
{"title":"全固体废弃物中碳化强化机理的比较分析:钢渣与电石渣","authors":"Qi Zhang, Pan Feng, Xuyan Shen, Yuxi Cai, Houru Zhen, Zhichao Liu","doi":"10.1016/j.cemconcomp.2025.105927","DOIUrl":null,"url":null,"abstract":"Maximizing the use of solid wastes to replace energy-intensive cement while maintaining the comparable mechanical properties is a promising strategy for developing negative carbon building materials. In this paper, full steel slag/carbide slag blocks were prepared by pressing and subsequent carbonation to enhance mechanical properties and capture CO<sub>2</sub>. The evolution of carbonation degree and compressive strength with varying liquid to solid ratios and carbonation durations were characterized, followed by a comparative analysis of carbonation strengthening mechanisms. The results show that carbonation significantly improves compressive strengths, exhibiting a linear relationship between carbonation degree and compressive strength. The maximum carbonation degrees and compressive strengths achieved were 24.56% and 79.68 MPa for full steel slag blocks, and 64.46%, 44.64 MPa for full carbide slag blocks, respectively. Although the maximum carbonation degree of full steel slag blocks is only about one-third of that of the full carbide slag blocks, their superior compressive strength can be attributed to denser microstructures, stronger bonding properties between steel slag particles and carbonated products, and a larger effective elastic modulus. This study provides a new insight into the carbonation strengthening mechanisms based on the inherent properties of different materials and introduces a novel concept for creating high-performance, eco-friendly building materials.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Carbonation Strengthening Mechanisms in Full Solid Waste Materials: Steel Slag vs. Carbide Slag\",\"authors\":\"Qi Zhang, Pan Feng, Xuyan Shen, Yuxi Cai, Houru Zhen, Zhichao Liu\",\"doi\":\"10.1016/j.cemconcomp.2025.105927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximizing the use of solid wastes to replace energy-intensive cement while maintaining the comparable mechanical properties is a promising strategy for developing negative carbon building materials. In this paper, full steel slag/carbide slag blocks were prepared by pressing and subsequent carbonation to enhance mechanical properties and capture CO<sub>2</sub>. The evolution of carbonation degree and compressive strength with varying liquid to solid ratios and carbonation durations were characterized, followed by a comparative analysis of carbonation strengthening mechanisms. The results show that carbonation significantly improves compressive strengths, exhibiting a linear relationship between carbonation degree and compressive strength. The maximum carbonation degrees and compressive strengths achieved were 24.56% and 79.68 MPa for full steel slag blocks, and 64.46%, 44.64 MPa for full carbide slag blocks, respectively. Although the maximum carbonation degree of full steel slag blocks is only about one-third of that of the full carbide slag blocks, their superior compressive strength can be attributed to denser microstructures, stronger bonding properties between steel slag particles and carbonated products, and a larger effective elastic modulus. This study provides a new insight into the carbonation strengthening mechanisms based on the inherent properties of different materials and introduces a novel concept for creating high-performance, eco-friendly building materials.\",\"PeriodicalId\":519419,\"journal\":{\"name\":\"Cement and Concrete Composites\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cemconcomp.2025.105927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.105927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大限度地利用固体废物来替代能源密集型水泥,同时保持相当的机械性能,是开发负碳建筑材料的一个有前途的策略。本文通过压制和后续碳化制备了全钢渣/电石渣块,以提高其力学性能和捕集CO2。研究了不同液固比和碳化时间下碳化程度和抗压强度的变化规律,并对碳化强化机理进行了对比分析。结果表明:碳化显著提高了抗压强度,碳化程度与抗压强度呈线性关系;全钢渣块的最大碳化度和抗压强度分别为24.56%和79.68 MPa,全电石渣块的最大碳化度和抗压强度分别为64.46%和44.64 MPa。虽然全钢渣块的最大碳化程度仅为全电石渣块的三分之一左右,但其优异的抗压强度可归因于其组织更致密,钢渣颗粒与碳化产物之间的结合性能更强,有效弹性模量更大。本研究为基于不同材料固有特性的碳化强化机制提供了新的见解,并为创造高性能、环保的建筑材料引入了新的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Carbonation Strengthening Mechanisms in Full Solid Waste Materials: Steel Slag vs. Carbide Slag
Maximizing the use of solid wastes to replace energy-intensive cement while maintaining the comparable mechanical properties is a promising strategy for developing negative carbon building materials. In this paper, full steel slag/carbide slag blocks were prepared by pressing and subsequent carbonation to enhance mechanical properties and capture CO2. The evolution of carbonation degree and compressive strength with varying liquid to solid ratios and carbonation durations were characterized, followed by a comparative analysis of carbonation strengthening mechanisms. The results show that carbonation significantly improves compressive strengths, exhibiting a linear relationship between carbonation degree and compressive strength. The maximum carbonation degrees and compressive strengths achieved were 24.56% and 79.68 MPa for full steel slag blocks, and 64.46%, 44.64 MPa for full carbide slag blocks, respectively. Although the maximum carbonation degree of full steel slag blocks is only about one-third of that of the full carbide slag blocks, their superior compressive strength can be attributed to denser microstructures, stronger bonding properties between steel slag particles and carbonated products, and a larger effective elastic modulus. This study provides a new insight into the carbonation strengthening mechanisms based on the inherent properties of different materials and introduces a novel concept for creating high-performance, eco-friendly building materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on the performance of polyester fibers modification system for low carbon magnesium silicate-based cementitious materials Bottom-up innovation for sustainable leakproof Engineered Cementitious Composites (ECC) pipe: design method, ECC material, and pipe structure Characterizing and modelling the bond-slip behaviour of steel bars in 3D printed engineered cementitious composites Unbiased rheological properties determined by adversarial training with Bingham equation Enhancing photocatalytic efficiency and interfacial bonding on cement-based surfaces by constructing CaO-TiO2 hybrid catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1