OFPO & KGFPO:洪水过程观测的本体与知识图谱

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-01-03 DOI:10.1016/j.envsoft.2025.106317
Wenying Du, Chang Liu, Qingyun Xia, Mengtian Wen, Ying Hu, Zeqiang Chen, Lei Xu, Xiang Zhang, Berhanu Keno Terfa, Nengcheng Chen
{"title":"OFPO & KGFPO:洪水过程观测的本体与知识图谱","authors":"Wenying Du, Chang Liu, Qingyun Xia, Mengtian Wen, Ying Hu, Zeqiang Chen, Lei Xu, Xiang Zhang, Berhanu Keno Terfa, Nengcheng Chen","doi":"10.1016/j.envsoft.2025.106317","DOIUrl":null,"url":null,"abstract":"Flooding is the most frequent natural disaster globally, resulting in the highest economic losses. Efficient resource retrieval is crucial for improving flood response. Constructing a knowledge graph aids in the precise discovery of flood observation resources. However, current research faces issues: phased flood process observation is neglected, and effective correlation among disaster elements, such as tasks, data, methods, and sensors, is lacking. To address this, we construct the Ontology for Flood Process Observation (OFPO) and develop the Knowledge Graph for Flood Process Observation (KGFPO), providing integrated management and decision-making support. These are validated using the “7–20 Henan Extremely Heavy Rainfall” and “7-21 Xinxiang Extremely Heavy Rainfall” cases. OFPO and KGFPO achieve integrated management of flood observation resources, improve retrieval efficiency and accuracy, facilitate decision-making, and support other natural disasters.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"18 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OFPO & KGFPO: Ontology and knowledge graph for flood process observation\",\"authors\":\"Wenying Du, Chang Liu, Qingyun Xia, Mengtian Wen, Ying Hu, Zeqiang Chen, Lei Xu, Xiang Zhang, Berhanu Keno Terfa, Nengcheng Chen\",\"doi\":\"10.1016/j.envsoft.2025.106317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flooding is the most frequent natural disaster globally, resulting in the highest economic losses. Efficient resource retrieval is crucial for improving flood response. Constructing a knowledge graph aids in the precise discovery of flood observation resources. However, current research faces issues: phased flood process observation is neglected, and effective correlation among disaster elements, such as tasks, data, methods, and sensors, is lacking. To address this, we construct the Ontology for Flood Process Observation (OFPO) and develop the Knowledge Graph for Flood Process Observation (KGFPO), providing integrated management and decision-making support. These are validated using the “7–20 Henan Extremely Heavy Rainfall” and “7-21 Xinxiang Extremely Heavy Rainfall” cases. OFPO and KGFPO achieve integrated management of flood observation resources, improve retrieval efficiency and accuracy, facilitate decision-making, and support other natural disasters.\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envsoft.2025.106317\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2025.106317","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

洪水是全球最常见的自然灾害,造成的经济损失最大。有效的资源检索是提高洪水响应能力的关键。知识图谱的构建有助于洪水观测资源的精确发现。然而,目前的研究面临的问题是:忽视了洪水过程的阶段性观测,缺乏任务、数据、方法和传感器等灾害要素之间的有效关联。为此,我们构建了洪水过程观测本体(OFPO),开发了洪水过程观测知识图谱(KGFPO),为洪水过程观测提供综合管理和决策支持。以“7-20河南特大暴雨”和“7-21新乡特大暴雨”为例进行了验证。OFPO和KGFPO实现了洪水观测资源的综合管理,提高了检索效率和准确性,便于决策,支持其他自然灾害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OFPO & KGFPO: Ontology and knowledge graph for flood process observation
Flooding is the most frequent natural disaster globally, resulting in the highest economic losses. Efficient resource retrieval is crucial for improving flood response. Constructing a knowledge graph aids in the precise discovery of flood observation resources. However, current research faces issues: phased flood process observation is neglected, and effective correlation among disaster elements, such as tasks, data, methods, and sensors, is lacking. To address this, we construct the Ontology for Flood Process Observation (OFPO) and develop the Knowledge Graph for Flood Process Observation (KGFPO), providing integrated management and decision-making support. These are validated using the “7–20 Henan Extremely Heavy Rainfall” and “7-21 Xinxiang Extremely Heavy Rainfall” cases. OFPO and KGFPO achieve integrated management of flood observation resources, improve retrieval efficiency and accuracy, facilitate decision-making, and support other natural disasters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Doing hydrology when no in-situ data exists: Surrogate River discharge Model (SRM) GeoAI-based drainage crossing detection for elevation-derived hydrographic mapping Simple analysis of biodiversity response functions and multipliers for biodiversity offsetting and other applications A systemic approach to managing uncertainties in repetitive multibeam bathymetric surveys Integrated models of nutrient dynamics in lake and reservoir watersheds: A systematic review and integrated modelling decision pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1