Tobias Olsacher, Tristan Kraft, Christian Kokail, Barbara Kraus and Peter Zoller
{"title":"弱耗散量子多体系统中的哈密顿和刘维利学习","authors":"Tobias Olsacher, Tristan Kraft, Christian Kokail, Barbara Kraus and Peter Zoller","doi":"10.1088/2058-9565/ad9ed5","DOIUrl":null,"url":null,"abstract":"We discuss Hamiltonian and Liouvillian learning for analog quantum simulation from non-equilibrium quench dynamics in the limit of weakly dissipative many-body systems. We present and compare various methods and strategies to learn the operator content of the Hamiltonian and the Lindblad operators of the Liouvillian. We compare different ansätze based on an experimentally accessible ‘learning error’ which we consider as a function of the number of runs of the experiment. Initially, the learning error decreases with the inverse square root of the number of runs, as the error in the reconstructed parameters is dominated by shot noise. Eventually the learning error remains constant, allowing us to recognize missing ansatz terms. A central aspect of our approaches is to (re-)parametrize ansätze by introducing and varying the dependencies between parameters. This allows us to identify the relevant parameters of the system, thereby reducing the complexity of the learning task. Importantly, this (re-)parametrization relies solely on classical post-processing, which is compelling given the finite amount of data available from experiments. We illustrate and compare our methods with two experimentally relevant spin models.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems\",\"authors\":\"Tobias Olsacher, Tristan Kraft, Christian Kokail, Barbara Kraus and Peter Zoller\",\"doi\":\"10.1088/2058-9565/ad9ed5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss Hamiltonian and Liouvillian learning for analog quantum simulation from non-equilibrium quench dynamics in the limit of weakly dissipative many-body systems. We present and compare various methods and strategies to learn the operator content of the Hamiltonian and the Lindblad operators of the Liouvillian. We compare different ansätze based on an experimentally accessible ‘learning error’ which we consider as a function of the number of runs of the experiment. Initially, the learning error decreases with the inverse square root of the number of runs, as the error in the reconstructed parameters is dominated by shot noise. Eventually the learning error remains constant, allowing us to recognize missing ansatz terms. A central aspect of our approaches is to (re-)parametrize ansätze by introducing and varying the dependencies between parameters. This allows us to identify the relevant parameters of the system, thereby reducing the complexity of the learning task. Importantly, this (re-)parametrization relies solely on classical post-processing, which is compelling given the finite amount of data available from experiments. We illustrate and compare our methods with two experimentally relevant spin models.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad9ed5\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9ed5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems
We discuss Hamiltonian and Liouvillian learning for analog quantum simulation from non-equilibrium quench dynamics in the limit of weakly dissipative many-body systems. We present and compare various methods and strategies to learn the operator content of the Hamiltonian and the Lindblad operators of the Liouvillian. We compare different ansätze based on an experimentally accessible ‘learning error’ which we consider as a function of the number of runs of the experiment. Initially, the learning error decreases with the inverse square root of the number of runs, as the error in the reconstructed parameters is dominated by shot noise. Eventually the learning error remains constant, allowing us to recognize missing ansatz terms. A central aspect of our approaches is to (re-)parametrize ansätze by introducing and varying the dependencies between parameters. This allows us to identify the relevant parameters of the system, thereby reducing the complexity of the learning task. Importantly, this (re-)parametrization relies solely on classical post-processing, which is compelling given the finite amount of data available from experiments. We illustrate and compare our methods with two experimentally relevant spin models.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.