William O C Davis, Paul Burdekin, Tabijah Wasawo, Sarah E Thomas, Peter J Mosley, Joshua Nunn and Cameron McGarry
{"title":"在热铷蒸气中快速、低损耗、全光相位调制","authors":"William O C Davis, Paul Burdekin, Tabijah Wasawo, Sarah E Thomas, Peter J Mosley, Joshua Nunn and Cameron McGarry","doi":"10.1088/2058-9565/ad9fa3","DOIUrl":null,"url":null,"abstract":"Low-loss high-speed switches are an integral component of future photonic quantum technologies, with applications in state generation, multiplexing, and the implementation of quantum gates. Phase modulation is one method of achieving this switching; however, existing optical phase modulators offer either high bandwidth or low loss—not both. We demonstrate fast (100 MHz bandwidth), low-loss ( % transmission) phase shifting ( ) in a signal field, induced by a control field, and mediated by the two-photon transition in 87Rb vapour. The all-optical nature of the scheme circumvents restrictions of electronic phase modulators, where bandwidth and repetition rate can be limited by the requirement to rapidly modulate high voltages. We discuss routes to enhance both performance and scalability for application to a range of quantum and classical technologies.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"52 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast, low-loss, all-optical phase modulation in warm rubidium vapour\",\"authors\":\"William O C Davis, Paul Burdekin, Tabijah Wasawo, Sarah E Thomas, Peter J Mosley, Joshua Nunn and Cameron McGarry\",\"doi\":\"10.1088/2058-9565/ad9fa3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-loss high-speed switches are an integral component of future photonic quantum technologies, with applications in state generation, multiplexing, and the implementation of quantum gates. Phase modulation is one method of achieving this switching; however, existing optical phase modulators offer either high bandwidth or low loss—not both. We demonstrate fast (100 MHz bandwidth), low-loss ( % transmission) phase shifting ( ) in a signal field, induced by a control field, and mediated by the two-photon transition in 87Rb vapour. The all-optical nature of the scheme circumvents restrictions of electronic phase modulators, where bandwidth and repetition rate can be limited by the requirement to rapidly modulate high voltages. We discuss routes to enhance both performance and scalability for application to a range of quantum and classical technologies.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad9fa3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9fa3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Fast, low-loss, all-optical phase modulation in warm rubidium vapour
Low-loss high-speed switches are an integral component of future photonic quantum technologies, with applications in state generation, multiplexing, and the implementation of quantum gates. Phase modulation is one method of achieving this switching; however, existing optical phase modulators offer either high bandwidth or low loss—not both. We demonstrate fast (100 MHz bandwidth), low-loss ( % transmission) phase shifting ( ) in a signal field, induced by a control field, and mediated by the two-photon transition in 87Rb vapour. The all-optical nature of the scheme circumvents restrictions of electronic phase modulators, where bandwidth and repetition rate can be limited by the requirement to rapidly modulate high voltages. We discuss routes to enhance both performance and scalability for application to a range of quantum and classical technologies.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.