Wei Zhang , Muchen Shi , Chaoran Liu , Xiaoyang Su
{"title":"具有可调承载能力和工作频带的同步低频振动缓解和能量收集","authors":"Wei Zhang , Muchen Shi , Chaoran Liu , Xiaoyang Su","doi":"10.1016/j.cnsns.2024.108588","DOIUrl":null,"url":null,"abstract":"<div><div>Vibrations are usually harmful in engineering and thus need to be mitigated, whereas they are also potential sources of useful energy and can be harnessed. Current difficulty in vibration mitigation and energy harvesting is to achieve both objectives synchronously, especially in low-frequency environments. In this paper, a device composed of quasi-zero-stiffness (QZS) pneumatic support and magnetic-piezoelectric cantilever beams is proposed for synchronous low-frequency vibration mitigation and energy harvesting. The pneumatic support enables the adaptability to different load masses while maintaining QZS. The magnetic spacing in the magnetic-piezoelectric cantilever beam can be adjusted to produce various stiffness properties, including nonlinear positive stiffness, QZS, and bistability. The nonlinear dynamic behaviors are studied and the performances are analyzed based on the electromechanical coupled equations. Results indicate that energy harvesting and vibration mitigation can be achieved at low frequencies, and most importantly the energy harvesting region is located within the vibration mitigation region, implying synchronization of the two objectives. Different situations induced by the bifurcation of magnetic spacing are studied and discussed. It is shown that the magnetic spacing that produces QZS for the cantilever beam is the best choice, and the energy harvesting region can be easily tuned by adjusting the magnetic spacing.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"142 ","pages":"Article 108588"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronous low-frequency vibration mitigation and energy harvesting with tunable load bearing capacity and operation band\",\"authors\":\"Wei Zhang , Muchen Shi , Chaoran Liu , Xiaoyang Su\",\"doi\":\"10.1016/j.cnsns.2024.108588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vibrations are usually harmful in engineering and thus need to be mitigated, whereas they are also potential sources of useful energy and can be harnessed. Current difficulty in vibration mitigation and energy harvesting is to achieve both objectives synchronously, especially in low-frequency environments. In this paper, a device composed of quasi-zero-stiffness (QZS) pneumatic support and magnetic-piezoelectric cantilever beams is proposed for synchronous low-frequency vibration mitigation and energy harvesting. The pneumatic support enables the adaptability to different load masses while maintaining QZS. The magnetic spacing in the magnetic-piezoelectric cantilever beam can be adjusted to produce various stiffness properties, including nonlinear positive stiffness, QZS, and bistability. The nonlinear dynamic behaviors are studied and the performances are analyzed based on the electromechanical coupled equations. Results indicate that energy harvesting and vibration mitigation can be achieved at low frequencies, and most importantly the energy harvesting region is located within the vibration mitigation region, implying synchronization of the two objectives. Different situations induced by the bifurcation of magnetic spacing are studied and discussed. It is shown that the magnetic spacing that produces QZS for the cantilever beam is the best choice, and the energy harvesting region can be easily tuned by adjusting the magnetic spacing.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"142 \",\"pages\":\"Article 108588\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424007731\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424007731","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Synchronous low-frequency vibration mitigation and energy harvesting with tunable load bearing capacity and operation band
Vibrations are usually harmful in engineering and thus need to be mitigated, whereas they are also potential sources of useful energy and can be harnessed. Current difficulty in vibration mitigation and energy harvesting is to achieve both objectives synchronously, especially in low-frequency environments. In this paper, a device composed of quasi-zero-stiffness (QZS) pneumatic support and magnetic-piezoelectric cantilever beams is proposed for synchronous low-frequency vibration mitigation and energy harvesting. The pneumatic support enables the adaptability to different load masses while maintaining QZS. The magnetic spacing in the magnetic-piezoelectric cantilever beam can be adjusted to produce various stiffness properties, including nonlinear positive stiffness, QZS, and bistability. The nonlinear dynamic behaviors are studied and the performances are analyzed based on the electromechanical coupled equations. Results indicate that energy harvesting and vibration mitigation can be achieved at low frequencies, and most importantly the energy harvesting region is located within the vibration mitigation region, implying synchronization of the two objectives. Different situations induced by the bifurcation of magnetic spacing are studied and discussed. It is shown that the magnetic spacing that produces QZS for the cantilever beam is the best choice, and the energy harvesting region can be easily tuned by adjusting the magnetic spacing.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.