{"title":"基于局部-全局特征融合的红外小目标检测","authors":"Lang Wu;Yong Ma;Fan Fan;Jun Huang","doi":"10.1109/LSP.2024.3523226","DOIUrl":null,"url":null,"abstract":"Due to the high-luminance (HL) background clutter in infrared (IR) images, the existing IR small target detection methods struggle to achieve a good balance between efficiency and performance. Addressing the issue of HL clutter, which is difficult to suppress, leading to a high false alarm rate, this letter proposes an IR small target detection method based on local-global feature fusion (LGFF). We develop a fast and efficient local feature extraction operator and utilize global rarity to characterize the global feature of small targets, effectively suppressing a significant amount of HL clutter. By integrating local and global features, we achieve further enhancement of the targets and robust suppression of the clutter. Experimental results demonstrate that the proposed method outperforms existing methods in terms of target enhancement, clutter removal, and real-time performance.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"466-470"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared Small Target Detection via Local-Global Feature Fusion\",\"authors\":\"Lang Wu;Yong Ma;Fan Fan;Jun Huang\",\"doi\":\"10.1109/LSP.2024.3523226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high-luminance (HL) background clutter in infrared (IR) images, the existing IR small target detection methods struggle to achieve a good balance between efficiency and performance. Addressing the issue of HL clutter, which is difficult to suppress, leading to a high false alarm rate, this letter proposes an IR small target detection method based on local-global feature fusion (LGFF). We develop a fast and efficient local feature extraction operator and utilize global rarity to characterize the global feature of small targets, effectively suppressing a significant amount of HL clutter. By integrating local and global features, we achieve further enhancement of the targets and robust suppression of the clutter. Experimental results demonstrate that the proposed method outperforms existing methods in terms of target enhancement, clutter removal, and real-time performance.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"466-470\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816558/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816558/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Infrared Small Target Detection via Local-Global Feature Fusion
Due to the high-luminance (HL) background clutter in infrared (IR) images, the existing IR small target detection methods struggle to achieve a good balance between efficiency and performance. Addressing the issue of HL clutter, which is difficult to suppress, leading to a high false alarm rate, this letter proposes an IR small target detection method based on local-global feature fusion (LGFF). We develop a fast and efficient local feature extraction operator and utilize global rarity to characterize the global feature of small targets, effectively suppressing a significant amount of HL clutter. By integrating local and global features, we achieve further enhancement of the targets and robust suppression of the clutter. Experimental results demonstrate that the proposed method outperforms existing methods in terms of target enhancement, clutter removal, and real-time performance.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.