Hypformer:一个快速假设驱动的语音识别框架

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-12 DOI:10.1109/LSP.2024.3516700
Xuyi Zhuang;Yukun Qian;Mingjiang Wang
{"title":"Hypformer:一个快速假设驱动的语音识别框架","authors":"Xuyi Zhuang;Yukun Qian;Mingjiang Wang","doi":"10.1109/LSP.2024.3516700","DOIUrl":null,"url":null,"abstract":"Recently, the performance of non-autoregressive ASR models has made significant progress but still lags behind hybrid CTC/attention systems. This paper introduces Hypformer, a fast hypothesis-driven rescoring speech recognition framework. Multiple hypothetical prefixes are realized by fast prefix generation algorithm. With two different rescoring methods, nar-ar rescoring and nar\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\n rescoring, Hypformer can flexibly switch between autoregressive and non-autoregressive decoding modes to perform rescoring of hypothesis prefixes. Experiments on the standard Mandarin datasets AISHELL-1 and AISHELL-2 demonstrate that Hypformer outperforms the state-of-the-art Hybrid CTC/Attention systems in ASR performance while achieving a speedup of over six times. Experiments on the Mandarin sub-dialect dataset KeSpeech indicate that Hypformer achieves more accurate recognition by leveraging richer contextual information.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"471-475"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypformer: A Fast Hypothesis-Driven Rescoring Speech Recognition Framework\",\"authors\":\"Xuyi Zhuang;Yukun Qian;Mingjiang Wang\",\"doi\":\"10.1109/LSP.2024.3516700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the performance of non-autoregressive ASR models has made significant progress but still lags behind hybrid CTC/attention systems. This paper introduces Hypformer, a fast hypothesis-driven rescoring speech recognition framework. Multiple hypothetical prefixes are realized by fast prefix generation algorithm. With two different rescoring methods, nar-ar rescoring and nar\\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\\n rescoring, Hypformer can flexibly switch between autoregressive and non-autoregressive decoding modes to perform rescoring of hypothesis prefixes. Experiments on the standard Mandarin datasets AISHELL-1 and AISHELL-2 demonstrate that Hypformer outperforms the state-of-the-art Hybrid CTC/Attention systems in ASR performance while achieving a speedup of over six times. Experiments on the Mandarin sub-dialect dataset KeSpeech indicate that Hypformer achieves more accurate recognition by leveraging richer contextual information.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"471-475\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10795661/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10795661/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,非自回归ASR模型的性能取得了显著进展,但仍落后于混合CTC/注意力系统。本文介绍了Hypformer,一个基于假设驱动的快速语音识别框架。通过快速前缀生成算法实现了多个假设前缀。Hypformer采用nar-ar和nar$^{2}$两种不同的评分方法,可以灵活地在自回归和非自回归解码模式之间切换,对假设前缀进行评分。在标准普通话数据集AISHELL-1和AISHELL-2上的实验表明,Hypformer在ASR性能上优于最先进的Hybrid CTC/Attention系统,同时实现了6倍以上的加速。在普通话子方言数据集kesspeech上的实验表明,Hypformer利用了更丰富的上下文信息,实现了更准确的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypformer: A Fast Hypothesis-Driven Rescoring Speech Recognition Framework
Recently, the performance of non-autoregressive ASR models has made significant progress but still lags behind hybrid CTC/attention systems. This paper introduces Hypformer, a fast hypothesis-driven rescoring speech recognition framework. Multiple hypothetical prefixes are realized by fast prefix generation algorithm. With two different rescoring methods, nar-ar rescoring and nar $^{2}$ rescoring, Hypformer can flexibly switch between autoregressive and non-autoregressive decoding modes to perform rescoring of hypothesis prefixes. Experiments on the standard Mandarin datasets AISHELL-1 and AISHELL-2 demonstrate that Hypformer outperforms the state-of-the-art Hybrid CTC/Attention systems in ASR performance while achieving a speedup of over six times. Experiments on the Mandarin sub-dialect dataset KeSpeech indicate that Hypformer achieves more accurate recognition by leveraging richer contextual information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diffusion Generalized Minimum Total Error Entropy Algorithm FDDM: Frequency-Decomposed Diffusion Model for Dose Prediction in Radiotherapy Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Conjugate Gradient and Variance Reduction Based Online ADMM for Low-Rank Distributed Networks Blind Light Field Image Quality Assessment via Frequency Domain Analysis and Auxiliary Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1