Elnaz Hosseinzadeh, Hadi Mirgolbabaee, Lennart van de Velde, Michel Versluis, Erik Groot Jebbink, Alan Aguirre-Soto, Michel M. P. J. Reijnen
{"title":"用于双模态粒子图像测速(PIV)的软立体光刻3D打印模型","authors":"Elnaz Hosseinzadeh, Hadi Mirgolbabaee, Lennart van de Velde, Michel Versluis, Erik Groot Jebbink, Alan Aguirre-Soto, Michel M. P. J. Reijnen","doi":"10.1007/s00348-024-03938-2","DOIUrl":null,"url":null,"abstract":"<div><p>The fabrication of arterial flow phantoms for fluid dynamics studies suitable for particle image velocimetry (PIV) techniques has presented challenges. Current 3D-printed blood flow phantoms with suitable transparency for optical PIV (laserPIV) are restricted to rigid materials far from those of arterial properties. Conversely, while soft 3D-printed phantoms demonstrate promise for sufficient acoustical transparency for ultrasound PIV (echoPIV), their optical translucency presents challenges for laserPIV applicability. This dual-modality approach leverages the high spatial resolution of laserPIV for in-vitro applications and the ability of echoPIV to quantify flow in both in-vivo and in-vitro application (also inside stents), providing a more comprehensive understanding of flow dynamics. In this study, we present a series of coated thin-walled 3D-printed compliant phantoms suitable for dual-modality PIV flow imaging (i.e., laserPIV and echoPIV) methods, overcoming current 3D-printable material limitations. Stereolithographic (SLA) 3D printing was used to fabricate pipe flow phantoms from a set of commercial soft resins (flexible and elastic) as vascular tissue surrogates. To overcome low transparency and poor surface finish of soft resins, we coated the 3D-printed flow phantoms with a soft, optically transparent, photo-activated polymeric coating. The feasibility of performing dual-modality PIV was tested in an in-vitro flow setup. Our results show that the average normalized root mean square errors obtained from comparing laserPIV and echoPIV velocity profiles against the analytical solutions were 3.2% and 5.1%, and 3.3% and 5.3% for the flexible and elastic phantoms, respectively. These results indicate that dual-modality PIV flow imaging is feasible in the 3D-printed coated phantoms, promoting its future use in fabricating clinically-relevant flow phantoms.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03938-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Soft stereolithographic 3D printed phantoms for dual-modality particle image velocimetry (PIV)\",\"authors\":\"Elnaz Hosseinzadeh, Hadi Mirgolbabaee, Lennart van de Velde, Michel Versluis, Erik Groot Jebbink, Alan Aguirre-Soto, Michel M. P. J. Reijnen\",\"doi\":\"10.1007/s00348-024-03938-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fabrication of arterial flow phantoms for fluid dynamics studies suitable for particle image velocimetry (PIV) techniques has presented challenges. Current 3D-printed blood flow phantoms with suitable transparency for optical PIV (laserPIV) are restricted to rigid materials far from those of arterial properties. Conversely, while soft 3D-printed phantoms demonstrate promise for sufficient acoustical transparency for ultrasound PIV (echoPIV), their optical translucency presents challenges for laserPIV applicability. This dual-modality approach leverages the high spatial resolution of laserPIV for in-vitro applications and the ability of echoPIV to quantify flow in both in-vivo and in-vitro application (also inside stents), providing a more comprehensive understanding of flow dynamics. In this study, we present a series of coated thin-walled 3D-printed compliant phantoms suitable for dual-modality PIV flow imaging (i.e., laserPIV and echoPIV) methods, overcoming current 3D-printable material limitations. Stereolithographic (SLA) 3D printing was used to fabricate pipe flow phantoms from a set of commercial soft resins (flexible and elastic) as vascular tissue surrogates. To overcome low transparency and poor surface finish of soft resins, we coated the 3D-printed flow phantoms with a soft, optically transparent, photo-activated polymeric coating. The feasibility of performing dual-modality PIV was tested in an in-vitro flow setup. Our results show that the average normalized root mean square errors obtained from comparing laserPIV and echoPIV velocity profiles against the analytical solutions were 3.2% and 5.1%, and 3.3% and 5.3% for the flexible and elastic phantoms, respectively. These results indicate that dual-modality PIV flow imaging is feasible in the 3D-printed coated phantoms, promoting its future use in fabricating clinically-relevant flow phantoms.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-024-03938-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03938-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03938-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Soft stereolithographic 3D printed phantoms for dual-modality particle image velocimetry (PIV)
The fabrication of arterial flow phantoms for fluid dynamics studies suitable for particle image velocimetry (PIV) techniques has presented challenges. Current 3D-printed blood flow phantoms with suitable transparency for optical PIV (laserPIV) are restricted to rigid materials far from those of arterial properties. Conversely, while soft 3D-printed phantoms demonstrate promise for sufficient acoustical transparency for ultrasound PIV (echoPIV), their optical translucency presents challenges for laserPIV applicability. This dual-modality approach leverages the high spatial resolution of laserPIV for in-vitro applications and the ability of echoPIV to quantify flow in both in-vivo and in-vitro application (also inside stents), providing a more comprehensive understanding of flow dynamics. In this study, we present a series of coated thin-walled 3D-printed compliant phantoms suitable for dual-modality PIV flow imaging (i.e., laserPIV and echoPIV) methods, overcoming current 3D-printable material limitations. Stereolithographic (SLA) 3D printing was used to fabricate pipe flow phantoms from a set of commercial soft resins (flexible and elastic) as vascular tissue surrogates. To overcome low transparency and poor surface finish of soft resins, we coated the 3D-printed flow phantoms with a soft, optically transparent, photo-activated polymeric coating. The feasibility of performing dual-modality PIV was tested in an in-vitro flow setup. Our results show that the average normalized root mean square errors obtained from comparing laserPIV and echoPIV velocity profiles against the analytical solutions were 3.2% and 5.1%, and 3.3% and 5.3% for the flexible and elastic phantoms, respectively. These results indicate that dual-modality PIV flow imaging is feasible in the 3D-printed coated phantoms, promoting its future use in fabricating clinically-relevant flow phantoms.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.