{"title":"利用有针对性的混合增强少量射击学习","authors":"Yaw Darkwah Jnr., Dae-Ki Kang","doi":"10.1007/s10489-024-06157-8","DOIUrl":null,"url":null,"abstract":"<div><p>Irrespective of the attention that long-tailed classification has received over recent years, expectedly, the performance of the tail classes suffers more than the remaining classes. We address this problem by means of a novel data augmentation technique called Targeted Mixup. This is about mixing class samples based on the model’s performance regarding each class. Instances of classes that are difficult to distinguish are randomly chosen and linearly interpolated to produce a new sample such that the model can pay attention to those two classes. The expectation is that the model can learn the distinguishing features to improve classification of instances belonging to their respective classes. To prove the efficiency of our proposed methods empirically, we performed experiments using CIFAR-100-LT, Places-LT, and Speech Commands-LT datasets. From the results of the experiments, there was an improvement on the few-shot classes without sacrificing too much of the model performance on the many-shot and medium-shot classes. In fact, there was an increase in the overall accuracy as well.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing few-shot learning using targeted mixup\",\"authors\":\"Yaw Darkwah Jnr., Dae-Ki Kang\",\"doi\":\"10.1007/s10489-024-06157-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Irrespective of the attention that long-tailed classification has received over recent years, expectedly, the performance of the tail classes suffers more than the remaining classes. We address this problem by means of a novel data augmentation technique called Targeted Mixup. This is about mixing class samples based on the model’s performance regarding each class. Instances of classes that are difficult to distinguish are randomly chosen and linearly interpolated to produce a new sample such that the model can pay attention to those two classes. The expectation is that the model can learn the distinguishing features to improve classification of instances belonging to their respective classes. To prove the efficiency of our proposed methods empirically, we performed experiments using CIFAR-100-LT, Places-LT, and Speech Commands-LT datasets. From the results of the experiments, there was an improvement on the few-shot classes without sacrificing too much of the model performance on the many-shot and medium-shot classes. In fact, there was an increase in the overall accuracy as well.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06157-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06157-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Irrespective of the attention that long-tailed classification has received over recent years, expectedly, the performance of the tail classes suffers more than the remaining classes. We address this problem by means of a novel data augmentation technique called Targeted Mixup. This is about mixing class samples based on the model’s performance regarding each class. Instances of classes that are difficult to distinguish are randomly chosen and linearly interpolated to produce a new sample such that the model can pay attention to those two classes. The expectation is that the model can learn the distinguishing features to improve classification of instances belonging to their respective classes. To prove the efficiency of our proposed methods empirically, we performed experiments using CIFAR-100-LT, Places-LT, and Speech Commands-LT datasets. From the results of the experiments, there was an improvement on the few-shot classes without sacrificing too much of the model performance on the many-shot and medium-shot classes. In fact, there was an increase in the overall accuracy as well.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.