残差峰值神经网络的种群编码自适应峰值神经元

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-09 DOI:10.1007/s10489-024-06128-z
Yongping Dan, Changhao Sun, Hengyi Li, Lin Meng
{"title":"残差峰值神经网络的种群编码自适应峰值神经元","authors":"Yongping Dan,&nbsp;Changhao Sun,&nbsp;Hengyi Li,&nbsp;Lin Meng","doi":"10.1007/s10489-024-06128-z","DOIUrl":null,"url":null,"abstract":"<div><p>Spiking neural networks (SNNs) have attracted significant research attention due to their inherent sparsity and event-driven processing capabilities. Recent studies indicate that the incorporation of convolutional and residual structures into SNNs can substantially enhance performance. However, these converted spiking residual structures are associated with increased complexity and stacked parameterized spiking neurons. To address this challenge, this paper proposes a meticulously refined two-layer decision structure for residual-based SNNs, consisting solely of fully connected and spiking neuron layers. Specifically, the spiking neuron layers incorporate an innovative dynamic leaky integrate-and-fire (DLIF) neuron model with a nonlinear self-feedback mechanism, characterized by dynamic threshold adjustment and a self-regulating firing rate. Furthermore, diverging from traditional direct encoding, which focuses solely on individual neuronal frequency, we introduce a novel mixed coding mechanism that combines direct encoding with multineuronal population decoding. The proposed architecture improves the adaptability and responsiveness of spiking neurons in various computational contexts. Experimental results demonstrate the superior efficacy of our approach. Although it uses a highly simplified structure with only 6 timesteps, our proposal achieves enhanced performance in the experimental trials compared to multiple state-of-the-art methods. Specifically, it achieves accuracy improvements of 0.01-1.99% on three static datasets and of 0.14-7.50% on three N-datasets. The DLIF model excels in information processing, showing double mutual information compared to other neurons. In the sequential MNIST dataset, it balances biological realism and practicality, enhancing memory and the dynamic range. Our proposed method not only offers improved computational efficacy and simplified network structure but also enhances the biological plausibility of SNN models and can be easily adapted to other deep SNNs.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive spiking neuron with population coding for a residual spiking neural network\",\"authors\":\"Yongping Dan,&nbsp;Changhao Sun,&nbsp;Hengyi Li,&nbsp;Lin Meng\",\"doi\":\"10.1007/s10489-024-06128-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spiking neural networks (SNNs) have attracted significant research attention due to their inherent sparsity and event-driven processing capabilities. Recent studies indicate that the incorporation of convolutional and residual structures into SNNs can substantially enhance performance. However, these converted spiking residual structures are associated with increased complexity and stacked parameterized spiking neurons. To address this challenge, this paper proposes a meticulously refined two-layer decision structure for residual-based SNNs, consisting solely of fully connected and spiking neuron layers. Specifically, the spiking neuron layers incorporate an innovative dynamic leaky integrate-and-fire (DLIF) neuron model with a nonlinear self-feedback mechanism, characterized by dynamic threshold adjustment and a self-regulating firing rate. Furthermore, diverging from traditional direct encoding, which focuses solely on individual neuronal frequency, we introduce a novel mixed coding mechanism that combines direct encoding with multineuronal population decoding. The proposed architecture improves the adaptability and responsiveness of spiking neurons in various computational contexts. Experimental results demonstrate the superior efficacy of our approach. Although it uses a highly simplified structure with only 6 timesteps, our proposal achieves enhanced performance in the experimental trials compared to multiple state-of-the-art methods. Specifically, it achieves accuracy improvements of 0.01-1.99% on three static datasets and of 0.14-7.50% on three N-datasets. The DLIF model excels in information processing, showing double mutual information compared to other neurons. In the sequential MNIST dataset, it balances biological realism and practicality, enhancing memory and the dynamic range. Our proposed method not only offers improved computational efficacy and simplified network structure but also enhances the biological plausibility of SNN models and can be easily adapted to other deep SNNs.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06128-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06128-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脉冲神经网络(snn)由于其固有的稀疏性和事件驱动的处理能力而引起了广泛的研究关注。最近的研究表明,将卷积结构和残差结构结合到snn中可以大大提高性能。然而,这些转换的尖峰残余结构与复杂性的增加和参数化尖峰神经元的堆叠有关。为了解决这一挑战,本文提出了一种精心改进的基于残差的snn的两层决策结构,仅由完全连接和尖峰神经元层组成。具体来说,脉冲神经元层结合了一种创新的动态泄漏集成和放电(DLIF)神经元模型,该模型具有非线性自反馈机制,其特征是动态阈值调节和自调节放电速率。此外,与传统的只关注单个神经元频率的直接编码不同,我们引入了一种新的混合编码机制,将直接编码与多神经元群体解码相结合。提出的结构提高了尖峰神经元在各种计算环境下的适应性和响应性。实验结果证明了该方法的优越性。虽然它使用高度简化的结构,只有6个时间步,但与多种最先进的方法相比,我们的提议在实验试验中实现了更高的性能。具体来说,它在三个静态数据集上的准确率提高了0.01-1.99%,在三个n -数据集上的准确率提高了0.14-7.50%。DLIF模型具有较强的信息处理能力,与其他神经元相比具有双重互信息。在序列MNIST数据集中,它平衡了生物的现实性和实用性,增强了记忆和动态范围。我们提出的方法不仅提高了计算效率和简化了网络结构,而且增强了SNN模型的生物合理性,并且可以很容易地适应其他深度SNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive spiking neuron with population coding for a residual spiking neural network

Spiking neural networks (SNNs) have attracted significant research attention due to their inherent sparsity and event-driven processing capabilities. Recent studies indicate that the incorporation of convolutional and residual structures into SNNs can substantially enhance performance. However, these converted spiking residual structures are associated with increased complexity and stacked parameterized spiking neurons. To address this challenge, this paper proposes a meticulously refined two-layer decision structure for residual-based SNNs, consisting solely of fully connected and spiking neuron layers. Specifically, the spiking neuron layers incorporate an innovative dynamic leaky integrate-and-fire (DLIF) neuron model with a nonlinear self-feedback mechanism, characterized by dynamic threshold adjustment and a self-regulating firing rate. Furthermore, diverging from traditional direct encoding, which focuses solely on individual neuronal frequency, we introduce a novel mixed coding mechanism that combines direct encoding with multineuronal population decoding. The proposed architecture improves the adaptability and responsiveness of spiking neurons in various computational contexts. Experimental results demonstrate the superior efficacy of our approach. Although it uses a highly simplified structure with only 6 timesteps, our proposal achieves enhanced performance in the experimental trials compared to multiple state-of-the-art methods. Specifically, it achieves accuracy improvements of 0.01-1.99% on three static datasets and of 0.14-7.50% on three N-datasets. The DLIF model excels in information processing, showing double mutual information compared to other neurons. In the sequential MNIST dataset, it balances biological realism and practicality, enhancing memory and the dynamic range. Our proposed method not only offers improved computational efficacy and simplified network structure but also enhances the biological plausibility of SNN models and can be easily adapted to other deep SNNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Multi-view learning based on product and process metrics for software defect prediction MVSRF: Point cloud semantic segmentation and optimization method for granular construction objects WLKA-RVS: a retinal vessel segmentation method using weighted large kernel attention DAAR: Dual attention cooperative adaptive pruning rate by data-driven for filter pruning Chaotic opposition-based plant propagation algorithm for engineering problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1