密度,粘度和折射率变化在柴油燃料+高醇混合物在不同的温度

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2025-01-09 DOI:10.1007/s10765-024-03475-4
Sibel Osman, Mert Gülüm, Amalia Stefaniu
{"title":"密度,粘度和折射率变化在柴油燃料+高醇混合物在不同的温度","authors":"Sibel Osman,&nbsp;Mert Gülüm,&nbsp;Amalia Stefaniu","doi":"10.1007/s10765-024-03475-4","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the physical properties of diesel fuel blends is essential for evaluating spray characteristics, engine performance, and exhaust emissions of internal combustion engines. Moreover, higher alcohols (n-butanol, n-pentanol, and n-octanol) have recently garnered attention as promising oxygenated additives for enhancing the fuel characteristics of diesel fuel in various combustion applications. For these reasons, in this study, density (ρ), kinematic viscosity (ν), and refractive index (n<sub>D</sub>) values of pseudo-binary blends (diesel fuel + n-butanol, diesel fuel + n-pentanol, and diesel fuel + n-octanol) are measured at different temperatures (288.15 K–323.15 K with 5 K interval) and over the entire range of composition (mole fractions). Experimental results for n-butanol, n-pentanol, and n-octanol obtained in this study are consistent with literature values, showing average absolute percentage deviation less than 0.11 %, 3.94 %, and 0.14 % for density, viscosity, and refractive index, respectively. The studied blends meet density and kinematic viscosity limits imposed by the diesel fuel standard (EN 590). Derived from the experimental data, excess molar volumes, viscosity deviations, and refractive index deviations are calculated. These deviation from ideality are fitted using the Redlich–Kister polynomial equation. Refractive index data of pseudo-binary blends are predicted using different models (Lorentz–Lorenz, Gladstone–Dale, Newton, Eykman, Heller, and Edwards). These models have low average absolute percentage deviation (less than 0.67%) for all studied pseudo-binary blends and temperature ranges (293.15 K–308.15 K), which shows they give excellent fitting results between measured data and calculated values.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density, Viscosity, and Refractive Index Variations in Diesel Fuel + Higher Alcohols Blends at Various Temperatures\",\"authors\":\"Sibel Osman,&nbsp;Mert Gülüm,&nbsp;Amalia Stefaniu\",\"doi\":\"10.1007/s10765-024-03475-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the physical properties of diesel fuel blends is essential for evaluating spray characteristics, engine performance, and exhaust emissions of internal combustion engines. Moreover, higher alcohols (n-butanol, n-pentanol, and n-octanol) have recently garnered attention as promising oxygenated additives for enhancing the fuel characteristics of diesel fuel in various combustion applications. For these reasons, in this study, density (ρ), kinematic viscosity (ν), and refractive index (n<sub>D</sub>) values of pseudo-binary blends (diesel fuel + n-butanol, diesel fuel + n-pentanol, and diesel fuel + n-octanol) are measured at different temperatures (288.15 K–323.15 K with 5 K interval) and over the entire range of composition (mole fractions). Experimental results for n-butanol, n-pentanol, and n-octanol obtained in this study are consistent with literature values, showing average absolute percentage deviation less than 0.11 %, 3.94 %, and 0.14 % for density, viscosity, and refractive index, respectively. The studied blends meet density and kinematic viscosity limits imposed by the diesel fuel standard (EN 590). Derived from the experimental data, excess molar volumes, viscosity deviations, and refractive index deviations are calculated. These deviation from ideality are fitted using the Redlich–Kister polynomial equation. Refractive index data of pseudo-binary blends are predicted using different models (Lorentz–Lorenz, Gladstone–Dale, Newton, Eykman, Heller, and Edwards). These models have low average absolute percentage deviation (less than 0.67%) for all studied pseudo-binary blends and temperature ranges (293.15 K–308.15 K), which shows they give excellent fitting results between measured data and calculated values.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03475-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03475-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

了解柴油混合燃料的物理特性对于评估喷射特性、发动机性能和内燃机废气排放至关重要。此外,高级醇(正丁醇、正戊醇和正辛醇)最近作为有前途的含氧添加剂引起了人们的关注,以提高柴油在各种燃烧应用中的燃料特性。基于这些原因,本研究在不同温度(288.15 K - 323.15 K,间隔5 K)和整个组成范围(摩尔分数)下测量了伪二元混合物(柴油+正丁醇、柴油+正戊醇和柴油+正辛醇)的密度(ρ)、运动粘度(ν)和折射率(nD)值。本研究得到的正丁醇、正戊醇和正辛醇的实验结果与文献值一致,密度、粘度和折射率的平均绝对百分比偏差分别小于0.11%、3.94%和0.14%。所研究的混合物符合柴油燃料标准(en590)规定的密度和运动粘度限制。根据实验数据,计算了过量摩尔体积、粘度偏差和折射率偏差。这些理想偏差用Redlich-Kister多项式方程拟合。利用不同的模型(Lorentz-Lorenz、Gladstone-Dale、Newton、Eykman、Heller和Edwards)预测了伪二元共混物的折射率数据。这些模型对所有研究的伪二元混合物和温度范围(293.15 K - 308.15 K)具有较低的平均绝对百分比偏差(小于0.67%),表明它们在测量数据和计算值之间具有良好的拟合结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density, Viscosity, and Refractive Index Variations in Diesel Fuel + Higher Alcohols Blends at Various Temperatures

Understanding the physical properties of diesel fuel blends is essential for evaluating spray characteristics, engine performance, and exhaust emissions of internal combustion engines. Moreover, higher alcohols (n-butanol, n-pentanol, and n-octanol) have recently garnered attention as promising oxygenated additives for enhancing the fuel characteristics of diesel fuel in various combustion applications. For these reasons, in this study, density (ρ), kinematic viscosity (ν), and refractive index (nD) values of pseudo-binary blends (diesel fuel + n-butanol, diesel fuel + n-pentanol, and diesel fuel + n-octanol) are measured at different temperatures (288.15 K–323.15 K with 5 K interval) and over the entire range of composition (mole fractions). Experimental results for n-butanol, n-pentanol, and n-octanol obtained in this study are consistent with literature values, showing average absolute percentage deviation less than 0.11 %, 3.94 %, and 0.14 % for density, viscosity, and refractive index, respectively. The studied blends meet density and kinematic viscosity limits imposed by the diesel fuel standard (EN 590). Derived from the experimental data, excess molar volumes, viscosity deviations, and refractive index deviations are calculated. These deviation from ideality are fitted using the Redlich–Kister polynomial equation. Refractive index data of pseudo-binary blends are predicted using different models (Lorentz–Lorenz, Gladstone–Dale, Newton, Eykman, Heller, and Edwards). These models have low average absolute percentage deviation (less than 0.67%) for all studied pseudo-binary blends and temperature ranges (293.15 K–308.15 K), which shows they give excellent fitting results between measured data and calculated values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
The Extended Pulse Method for the Measurement of the Thermal Diffusivity of Solids Investigating Anisotropic Three-Phonon Interactions in Graphene’s Thermal Conductivity Using Monte Carlo Method Joule Effect in Electrically Aligned CNFs: Toward Fast Heating of Liquids A Helmholtz Energy Equation of State for 3,3,3-Trifluoroprop-1-ene (R-1243zf) Parametrical Identity Mapping: An Evaluation Procedure for THW Signals and Other Time-Series Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1