{"title":"密度,粘度和折射率变化在柴油燃料+高醇混合物在不同的温度","authors":"Sibel Osman, Mert Gülüm, Amalia Stefaniu","doi":"10.1007/s10765-024-03475-4","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the physical properties of diesel fuel blends is essential for evaluating spray characteristics, engine performance, and exhaust emissions of internal combustion engines. Moreover, higher alcohols (n-butanol, n-pentanol, and n-octanol) have recently garnered attention as promising oxygenated additives for enhancing the fuel characteristics of diesel fuel in various combustion applications. For these reasons, in this study, density (ρ), kinematic viscosity (ν), and refractive index (n<sub>D</sub>) values of pseudo-binary blends (diesel fuel + n-butanol, diesel fuel + n-pentanol, and diesel fuel + n-octanol) are measured at different temperatures (288.15 K–323.15 K with 5 K interval) and over the entire range of composition (mole fractions). Experimental results for n-butanol, n-pentanol, and n-octanol obtained in this study are consistent with literature values, showing average absolute percentage deviation less than 0.11 %, 3.94 %, and 0.14 % for density, viscosity, and refractive index, respectively. The studied blends meet density and kinematic viscosity limits imposed by the diesel fuel standard (EN 590). Derived from the experimental data, excess molar volumes, viscosity deviations, and refractive index deviations are calculated. These deviation from ideality are fitted using the Redlich–Kister polynomial equation. Refractive index data of pseudo-binary blends are predicted using different models (Lorentz–Lorenz, Gladstone–Dale, Newton, Eykman, Heller, and Edwards). These models have low average absolute percentage deviation (less than 0.67%) for all studied pseudo-binary blends and temperature ranges (293.15 K–308.15 K), which shows they give excellent fitting results between measured data and calculated values.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density, Viscosity, and Refractive Index Variations in Diesel Fuel + Higher Alcohols Blends at Various Temperatures\",\"authors\":\"Sibel Osman, Mert Gülüm, Amalia Stefaniu\",\"doi\":\"10.1007/s10765-024-03475-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the physical properties of diesel fuel blends is essential for evaluating spray characteristics, engine performance, and exhaust emissions of internal combustion engines. Moreover, higher alcohols (n-butanol, n-pentanol, and n-octanol) have recently garnered attention as promising oxygenated additives for enhancing the fuel characteristics of diesel fuel in various combustion applications. For these reasons, in this study, density (ρ), kinematic viscosity (ν), and refractive index (n<sub>D</sub>) values of pseudo-binary blends (diesel fuel + n-butanol, diesel fuel + n-pentanol, and diesel fuel + n-octanol) are measured at different temperatures (288.15 K–323.15 K with 5 K interval) and over the entire range of composition (mole fractions). Experimental results for n-butanol, n-pentanol, and n-octanol obtained in this study are consistent with literature values, showing average absolute percentage deviation less than 0.11 %, 3.94 %, and 0.14 % for density, viscosity, and refractive index, respectively. The studied blends meet density and kinematic viscosity limits imposed by the diesel fuel standard (EN 590). Derived from the experimental data, excess molar volumes, viscosity deviations, and refractive index deviations are calculated. These deviation from ideality are fitted using the Redlich–Kister polynomial equation. Refractive index data of pseudo-binary blends are predicted using different models (Lorentz–Lorenz, Gladstone–Dale, Newton, Eykman, Heller, and Edwards). These models have low average absolute percentage deviation (less than 0.67%) for all studied pseudo-binary blends and temperature ranges (293.15 K–308.15 K), which shows they give excellent fitting results between measured data and calculated values.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03475-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03475-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
了解柴油混合燃料的物理特性对于评估喷射特性、发动机性能和内燃机废气排放至关重要。此外,高级醇(正丁醇、正戊醇和正辛醇)最近作为有前途的含氧添加剂引起了人们的关注,以提高柴油在各种燃烧应用中的燃料特性。基于这些原因,本研究在不同温度(288.15 K - 323.15 K,间隔5 K)和整个组成范围(摩尔分数)下测量了伪二元混合物(柴油+正丁醇、柴油+正戊醇和柴油+正辛醇)的密度(ρ)、运动粘度(ν)和折射率(nD)值。本研究得到的正丁醇、正戊醇和正辛醇的实验结果与文献值一致,密度、粘度和折射率的平均绝对百分比偏差分别小于0.11%、3.94%和0.14%。所研究的混合物符合柴油燃料标准(en590)规定的密度和运动粘度限制。根据实验数据,计算了过量摩尔体积、粘度偏差和折射率偏差。这些理想偏差用Redlich-Kister多项式方程拟合。利用不同的模型(Lorentz-Lorenz、Gladstone-Dale、Newton、Eykman、Heller和Edwards)预测了伪二元共混物的折射率数据。这些模型对所有研究的伪二元混合物和温度范围(293.15 K - 308.15 K)具有较低的平均绝对百分比偏差(小于0.67%),表明它们在测量数据和计算值之间具有良好的拟合结果。
Density, Viscosity, and Refractive Index Variations in Diesel Fuel + Higher Alcohols Blends at Various Temperatures
Understanding the physical properties of diesel fuel blends is essential for evaluating spray characteristics, engine performance, and exhaust emissions of internal combustion engines. Moreover, higher alcohols (n-butanol, n-pentanol, and n-octanol) have recently garnered attention as promising oxygenated additives for enhancing the fuel characteristics of diesel fuel in various combustion applications. For these reasons, in this study, density (ρ), kinematic viscosity (ν), and refractive index (nD) values of pseudo-binary blends (diesel fuel + n-butanol, diesel fuel + n-pentanol, and diesel fuel + n-octanol) are measured at different temperatures (288.15 K–323.15 K with 5 K interval) and over the entire range of composition (mole fractions). Experimental results for n-butanol, n-pentanol, and n-octanol obtained in this study are consistent with literature values, showing average absolute percentage deviation less than 0.11 %, 3.94 %, and 0.14 % for density, viscosity, and refractive index, respectively. The studied blends meet density and kinematic viscosity limits imposed by the diesel fuel standard (EN 590). Derived from the experimental data, excess molar volumes, viscosity deviations, and refractive index deviations are calculated. These deviation from ideality are fitted using the Redlich–Kister polynomial equation. Refractive index data of pseudo-binary blends are predicted using different models (Lorentz–Lorenz, Gladstone–Dale, Newton, Eykman, Heller, and Edwards). These models have low average absolute percentage deviation (less than 0.67%) for all studied pseudo-binary blends and temperature ranges (293.15 K–308.15 K), which shows they give excellent fitting results between measured data and calculated values.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.