分散促进了已开发酵母互惠关系的稳定性和持久性

Cong Liu, Mayra C Vidal
{"title":"分散促进了已开发酵母互惠关系的稳定性和持久性","authors":"Cong Liu, Mayra C Vidal","doi":"10.1093/ismejo/wraf003","DOIUrl":null,"url":null,"abstract":"Multi-species mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited. In this study, we used a synthetic mutualism formed by genetically modified budding yeast to investigate the effect of dispersal on the persistence and stability of mutualisms under exploitation. We found that dispersal increased the persistence of exploited mutualisms by 80% compared to the isolated systems. Furthermore, our results showed that dispersal increased local diversity, decreased beta diversity among local communities, and stabilized community structure at the regional scale. Our results indicate that dispersal can allow mutualisms to persist in meta-communities by reintroducing species that are locally competitively excluded by exploiters. With limited dispersal, e.g., due to increased fragmentation of meta-communities, mutualisms might be more prone to breakdown. Taken together, our results highlight the critical role of dispersal in facilitating the persistence of mutualism.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersal promotes stability and persistence of exploited yeast mutualisms\",\"authors\":\"Cong Liu, Mayra C Vidal\",\"doi\":\"10.1093/ismejo/wraf003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-species mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited. In this study, we used a synthetic mutualism formed by genetically modified budding yeast to investigate the effect of dispersal on the persistence and stability of mutualisms under exploitation. We found that dispersal increased the persistence of exploited mutualisms by 80% compared to the isolated systems. Furthermore, our results showed that dispersal increased local diversity, decreased beta diversity among local communities, and stabilized community structure at the regional scale. Our results indicate that dispersal can allow mutualisms to persist in meta-communities by reintroducing species that are locally competitively excluded by exploiters. With limited dispersal, e.g., due to increased fragmentation of meta-communities, mutualisms might be more prone to breakdown. Taken together, our results highlight the critical role of dispersal in facilitating the persistence of mutualism.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多物种相互作用在自然界中无处不在,也是必不可少的,但它们面临着一些威胁,其中许多威胁在人类世时代加剧了。在全球变化的背景下,了解推动互惠共生的稳定性和持久性的因素变得越来越重要。虽然扩散被广泛认为是维持生物多样性和群落结构的一个重要的空间显性过程,但关于共生体的扩散如何促进共生系统的持续存在的知识仍然有限。在本研究中,我们利用转基因芽殖酵母形成的合成共生体,研究了在开发过程中扩散对共生体持久性和稳定性的影响。我们发现,与孤立系统相比,分散使被利用的共生关系的持久性增加了80%。此外,我们的研究结果表明,分散增加了地方多样性,降低了地方群落之间的beta多样性,并稳定了区域尺度上的群落结构。我们的研究结果表明,通过重新引入那些在当地被剥削者竞争排斥的物种,扩散可以使共生关系在元群落中持续存在。由于有限的分散,例如,由于元群落的分裂增加,互惠关系可能更容易崩溃。综上所述,我们的研究结果强调了扩散在促进互惠共生持续发展中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dispersal promotes stability and persistence of exploited yeast mutualisms
Multi-species mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited. In this study, we used a synthetic mutualism formed by genetically modified budding yeast to investigate the effect of dispersal on the persistence and stability of mutualisms under exploitation. We found that dispersal increased the persistence of exploited mutualisms by 80% compared to the isolated systems. Furthermore, our results showed that dispersal increased local diversity, decreased beta diversity among local communities, and stabilized community structure at the regional scale. Our results indicate that dispersal can allow mutualisms to persist in meta-communities by reintroducing species that are locally competitively excluded by exploiters. With limited dispersal, e.g., due to increased fragmentation of meta-communities, mutualisms might be more prone to breakdown. Taken together, our results highlight the critical role of dispersal in facilitating the persistence of mutualism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic and species rearrangements in microbial consortia impact biodegradation potential Led astray by 16S rRNA: phylogenomics reaffirms the monophyly of Methylobacterium and lack of support for Methylorubrum as a genus. Tolerance to land-use changes through natural modulations of the plant microbiome Prophage-encoded chitinase gene supports growth of its bacterial host isolated from deep-sea sediments Dispersal promotes stability and persistence of exploited yeast mutualisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1