正交时频空间系统中基于射频指纹的高迁移率发射器识别框架

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-11-01 DOI:10.1109/LCOMM.2024.3490386
Manish Singh;Surya Pratap Singh;Udit Satija
{"title":"正交时频空间系统中基于射频指纹的高迁移率发射器识别框架","authors":"Manish Singh;Surya Pratap Singh;Udit Satija","doi":"10.1109/LCOMM.2024.3490386","DOIUrl":null,"url":null,"abstract":"Next-generation wireless systems face unique challenges in identifying high-mobility emitters/vehicles (HME/V), especially in the delay-Doppler domain, where existing technologies fall short. The orthogonal time-frequency space (OTFS) technique has recently been proposed to deal with challenges in the delay-Doppler domain. Hence, for the first time, this letter introduces a novel emitter identification (EI) framework using radio-frequency (RF) fingerprints of HME/V using OTFS. A convolutional neural network (CNN) is exploited to extract the RF fingerprints from in-phase and quadrature-phase (IQ) components of the received OTFS-modulated signal to identify different emitters accurately. Further, we also analyze the impact of the same/different set of digitally modulated baseband signals such as binary phase shift keying (BPSK), on-off keying (OOK), 4-amplitude shift keying (4ASK), and 8-amplitude shift keying (8ASK) within the OTFS, employed by the emitters. Experimental results depict the efficacy of the proposed EI framework for HME/V even under low signal-to-noise ratios (SNRs).","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"26-30"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Mobility Emitter Identification Framework Using RF-Fingerprints in Orthogonal Time-Frequency Space System\",\"authors\":\"Manish Singh;Surya Pratap Singh;Udit Satija\",\"doi\":\"10.1109/LCOMM.2024.3490386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next-generation wireless systems face unique challenges in identifying high-mobility emitters/vehicles (HME/V), especially in the delay-Doppler domain, where existing technologies fall short. The orthogonal time-frequency space (OTFS) technique has recently been proposed to deal with challenges in the delay-Doppler domain. Hence, for the first time, this letter introduces a novel emitter identification (EI) framework using radio-frequency (RF) fingerprints of HME/V using OTFS. A convolutional neural network (CNN) is exploited to extract the RF fingerprints from in-phase and quadrature-phase (IQ) components of the received OTFS-modulated signal to identify different emitters accurately. Further, we also analyze the impact of the same/different set of digitally modulated baseband signals such as binary phase shift keying (BPSK), on-off keying (OOK), 4-amplitude shift keying (4ASK), and 8-amplitude shift keying (8ASK) within the OTFS, employed by the emitters. Experimental results depict the efficacy of the proposed EI framework for HME/V even under low signal-to-noise ratios (SNRs).\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 1\",\"pages\":\"26-30\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10741215/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10741215/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

下一代无线系统在识别高移动性发射器/车辆(HME/V)方面面临着独特的挑战,特别是在现有技术不足的延迟多普勒域。正交时频空间(OTFS)技术最近被提出来解决延迟多普勒域的问题。因此,本文首次介绍了一种新的发射器识别(EI)框架,该框架使用使用OTFS的HME/V的射频(RF)指纹。利用卷积神经网络(CNN)从接收的otfs调制信号的同相和正交相(IQ)分量中提取射频指纹,以准确识别不同的发射器。此外,我们还分析了相同/不同的数字调制基带信号,如二进制相移键控(BPSK),开关键控(OOK), 4幅移键控(4ASK)和8幅移键控(8ASK)在OTFS内的影响,由发射器使用。实验结果表明,即使在低信噪比(SNRs)的情况下,所提出的EI框架对HME/V的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Mobility Emitter Identification Framework Using RF-Fingerprints in Orthogonal Time-Frequency Space System
Next-generation wireless systems face unique challenges in identifying high-mobility emitters/vehicles (HME/V), especially in the delay-Doppler domain, where existing technologies fall short. The orthogonal time-frequency space (OTFS) technique has recently been proposed to deal with challenges in the delay-Doppler domain. Hence, for the first time, this letter introduces a novel emitter identification (EI) framework using radio-frequency (RF) fingerprints of HME/V using OTFS. A convolutional neural network (CNN) is exploited to extract the RF fingerprints from in-phase and quadrature-phase (IQ) components of the received OTFS-modulated signal to identify different emitters accurately. Further, we also analyze the impact of the same/different set of digitally modulated baseband signals such as binary phase shift keying (BPSK), on-off keying (OOK), 4-amplitude shift keying (4ASK), and 8-amplitude shift keying (8ASK) within the OTFS, employed by the emitters. Experimental results depict the efficacy of the proposed EI framework for HME/V even under low signal-to-noise ratios (SNRs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
IEEE Communications Letters Publication Information IEEE Communications Letters Publication Information Few-Shot Specific Emitter Identification Based on a Contrastive Masked Learning Framework Cooperative Spectrum Sensing Using Weighted Graph Sparsity Low-Complexity Sparse Compensation MRC Detection Algorithm for OTSM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1