基于迁移学习和知识蒸馏的多用户语义通信优化

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-11-18 DOI:10.1109/LCOMM.2024.3499956
Loc X. Nguyen;Kitae Kim;Ye Lin Tun;Sheikh Salman Hassan;Yan Kyaw Tun;Zhu Han;Choong Seon Hong
{"title":"基于迁移学习和知识蒸馏的多用户语义通信优化","authors":"Loc X. Nguyen;Kitae Kim;Ye Lin Tun;Sheikh Salman Hassan;Yan Kyaw Tun;Zhu Han;Choong Seon Hong","doi":"10.1109/LCOMM.2024.3499956","DOIUrl":null,"url":null,"abstract":"Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users’ performance. Extensive simulations validate the proposed methods.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"90-94"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation\",\"authors\":\"Loc X. Nguyen;Kitae Kim;Ye Lin Tun;Sheikh Salman Hassan;Yan Kyaw Tun;Zhu Han;Choong Seon Hong\",\"doi\":\"10.1109/LCOMM.2024.3499956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users’ performance. Extensive simulations validate the proposed methods.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 1\",\"pages\":\"90-94\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10755087/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755087/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

语义通信(SemCom)能够有效地提取数据语义,消除冗余信息,减轻无线信道的噪声影响,通过联合优化信源和信道编码来保证服务质量。然而,大多数研究忽略了多用户场景和资源可用性,限制了现实世界的应用。这封信通过关注从基站到具有不同计算能力的多个用户的下行通信来解决这一差距。用户使用Swin变压器模型的变体进行源解码,并使用简单的架构进行信道解码。我们提出了一种新的训练过程FRENCA,结合迁移学习和知识蒸馏来提高低计算用户的性能。大量的仿真验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation
Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users’ performance. Extensive simulations validate the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
IEEE Communications Letters Publication Information IEEE Communications Letters Publication Information Few-Shot Specific Emitter Identification Based on a Contrastive Masked Learning Framework Cooperative Spectrum Sensing Using Weighted Graph Sparsity Low-Complexity Sparse Compensation MRC Detection Algorithm for OTSM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1