Loc X. Nguyen;Kitae Kim;Ye Lin Tun;Sheikh Salman Hassan;Yan Kyaw Tun;Zhu Han;Choong Seon Hong
{"title":"基于迁移学习和知识蒸馏的多用户语义通信优化","authors":"Loc X. Nguyen;Kitae Kim;Ye Lin Tun;Sheikh Salman Hassan;Yan Kyaw Tun;Zhu Han;Choong Seon Hong","doi":"10.1109/LCOMM.2024.3499956","DOIUrl":null,"url":null,"abstract":"Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users’ performance. Extensive simulations validate the proposed methods.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"90-94"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation\",\"authors\":\"Loc X. Nguyen;Kitae Kim;Ye Lin Tun;Sheikh Salman Hassan;Yan Kyaw Tun;Zhu Han;Choong Seon Hong\",\"doi\":\"10.1109/LCOMM.2024.3499956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users’ performance. Extensive simulations validate the proposed methods.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 1\",\"pages\":\"90-94\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10755087/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755087/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation
Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users’ performance. Extensive simulations validate the proposed methods.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.