基于流量感知网络切片和自适应TD3策略的移动边缘计算动态卸载

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-11-18 DOI:10.1109/LCOMM.2024.3501956
Amin Mohajer;Javad Hajipour;Victor C. M. Leung
{"title":"基于流量感知网络切片和自适应TD3策略的移动边缘计算动态卸载","authors":"Amin Mohajer;Javad Hajipour;Victor C. M. Leung","doi":"10.1109/LCOMM.2024.3501956","DOIUrl":null,"url":null,"abstract":"Network slicing and computation offloading play a pivotal role in enabling edge service providers to handle dynamic service demands effectively. However, traffic fluctuations and resource diversity pose significant challenges, often constrained by static configurations lacking flexibility. To overcome these limitations, this letter presents FlexSlice, a dynamic offloading framework designed to optimize resource allocation in mobile edge networks. Our approach leverages a sparse multi-head graph attention mechanism for precise traffic prediction, capturing complex spatio-temporal dependencies to enhance network slicing decisions. Additionally, we present an adaptive offloading strategy based on the twin delayed deep deterministic policy gradient algorithm, which incorporates twin critics and prioritized experience replay to improve decision-making under dynamic conditions. Simulation results confirm FlexSlice’s outstanding performance and adaptability in diverse operational scenarios, achieving higher profits and reliable quality of service.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"95-99"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Offloading in Mobile Edge Computing With Traffic-Aware Network Slicing and Adaptive TD3 Strategy\",\"authors\":\"Amin Mohajer;Javad Hajipour;Victor C. M. Leung\",\"doi\":\"10.1109/LCOMM.2024.3501956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network slicing and computation offloading play a pivotal role in enabling edge service providers to handle dynamic service demands effectively. However, traffic fluctuations and resource diversity pose significant challenges, often constrained by static configurations lacking flexibility. To overcome these limitations, this letter presents FlexSlice, a dynamic offloading framework designed to optimize resource allocation in mobile edge networks. Our approach leverages a sparse multi-head graph attention mechanism for precise traffic prediction, capturing complex spatio-temporal dependencies to enhance network slicing decisions. Additionally, we present an adaptive offloading strategy based on the twin delayed deep deterministic policy gradient algorithm, which incorporates twin critics and prioritized experience replay to improve decision-making under dynamic conditions. Simulation results confirm FlexSlice’s outstanding performance and adaptability in diverse operational scenarios, achieving higher profits and reliable quality of service.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 1\",\"pages\":\"95-99\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756668/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10756668/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

网络切片和计算卸载在使边缘服务提供商能够有效地处理动态服务需求方面发挥着关键作用。然而,流量波动和资源多样性构成重大挑战,往往受到缺乏灵活性的静态配置的限制。为了克服这些限制,这封信提出了FlexSlice,一个动态卸载框架,旨在优化移动边缘网络中的资源分配。我们的方法利用稀疏的多头图注意机制进行精确的流量预测,捕获复杂的时空依赖关系,以增强网络切片决策。此外,我们提出了一种基于双延迟深度确定性策略梯度算法的自适应卸载策略,该策略结合了双批评和优先经验重播,以改善动态条件下的决策。仿真结果证实了FlexSlice出色的性能和对不同运营场景的适应性,实现了更高的利润和可靠的服务质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Offloading in Mobile Edge Computing With Traffic-Aware Network Slicing and Adaptive TD3 Strategy
Network slicing and computation offloading play a pivotal role in enabling edge service providers to handle dynamic service demands effectively. However, traffic fluctuations and resource diversity pose significant challenges, often constrained by static configurations lacking flexibility. To overcome these limitations, this letter presents FlexSlice, a dynamic offloading framework designed to optimize resource allocation in mobile edge networks. Our approach leverages a sparse multi-head graph attention mechanism for precise traffic prediction, capturing complex spatio-temporal dependencies to enhance network slicing decisions. Additionally, we present an adaptive offloading strategy based on the twin delayed deep deterministic policy gradient algorithm, which incorporates twin critics and prioritized experience replay to improve decision-making under dynamic conditions. Simulation results confirm FlexSlice’s outstanding performance and adaptability in diverse operational scenarios, achieving higher profits and reliable quality of service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
IEEE Communications Letters Publication Information IEEE Communications Letters Publication Information Few-Shot Specific Emitter Identification Based on a Contrastive Masked Learning Framework Cooperative Spectrum Sensing Using Weighted Graph Sparsity Low-Complexity Sparse Compensation MRC Detection Algorithm for OTSM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1