时间和空间高效绘制十亿尺度属性网络

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-12-02 DOI:10.1109/TKDE.2024.3508256
Wei Wu;Shiqi Li;Mi Jiang;Chuan Luo;Fangfang Li
{"title":"时间和空间高效绘制十亿尺度属性网络","authors":"Wei Wu;Shiqi Li;Mi Jiang;Chuan Luo;Fangfang Li","doi":"10.1109/TKDE.2024.3508256","DOIUrl":null,"url":null,"abstract":"Attributed network embedding seeks to depict each network node via a compact, low-dimensional vector while effectively preserving the similarity between node pairs, which lays a strong foundation for a great many high-level network mining tasks. With the advent of the era of Big Data, the number of nodes and edges has reached billions in many real-world networks, which poses great computational and storage challenges to the existing methods. Although some algorithms have been developed to handle billion-scale networks, they often undergo accuracy degradation or tempo-spatial inefficiency owing to attribute information loss or substantial parameter learning. To this end, we propose a simple, time- and space-efficient billion-scale attributed network embedding algorithm called SketchBANE in this paper, which strikes an excellent balance between accuracy and efficiency by adopting sparse random projection with 1-bit quantization to sketch the iterative closed neighborhood and maintain the similarity among high-order nodes in a non-learning manner. The extensive experimental results indicate that our proposed SketchBANE algorithm competes favorably with the state-of-the-art approaches, while remarkably reducing runtime and space consumption. Also, the proposed SketchBANE algorithm exhibits good scalability and parallelization.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 2","pages":"966-978"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time- and Space-Efficiently Sketching Billion-Scale Attributed Networks\",\"authors\":\"Wei Wu;Shiqi Li;Mi Jiang;Chuan Luo;Fangfang Li\",\"doi\":\"10.1109/TKDE.2024.3508256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attributed network embedding seeks to depict each network node via a compact, low-dimensional vector while effectively preserving the similarity between node pairs, which lays a strong foundation for a great many high-level network mining tasks. With the advent of the era of Big Data, the number of nodes and edges has reached billions in many real-world networks, which poses great computational and storage challenges to the existing methods. Although some algorithms have been developed to handle billion-scale networks, they often undergo accuracy degradation or tempo-spatial inefficiency owing to attribute information loss or substantial parameter learning. To this end, we propose a simple, time- and space-efficient billion-scale attributed network embedding algorithm called SketchBANE in this paper, which strikes an excellent balance between accuracy and efficiency by adopting sparse random projection with 1-bit quantization to sketch the iterative closed neighborhood and maintain the similarity among high-order nodes in a non-learning manner. The extensive experimental results indicate that our proposed SketchBANE algorithm competes favorably with the state-of-the-art approaches, while remarkably reducing runtime and space consumption. Also, the proposed SketchBANE algorithm exhibits good scalability and parallelization.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 2\",\"pages\":\"966-978\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772250/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10772250/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

属性网络嵌入寻求通过紧凑的低维向量来描述每个网络节点,同时有效地保持节点对之间的相似性,这为许多高级网络挖掘任务奠定了坚实的基础。随着大数据时代的到来,在现实世界的许多网络中,节点和边缘的数量已经达到数十亿,这对现有的计算和存储方法提出了巨大的挑战。虽然已经开发了一些算法来处理十亿规模的网络,但由于属性信息丢失或大量参数学习,它们往往会出现精度下降或时空效率低下的问题。为此,本文提出了一种简单、节省时间和空间的十亿尺度属性网络嵌入算法SketchBANE,该算法采用1位量化的稀疏随机投影绘制迭代封闭邻域,以非学习的方式保持高阶节点之间的相似性,在精度和效率之间取得了很好的平衡。大量的实验结果表明,我们提出的SketchBANE算法与最先进的方法竞争,同时显着减少了运行时间和空间消耗。提出的算法具有良好的可扩展性和并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time- and Space-Efficiently Sketching Billion-Scale Attributed Networks
Attributed network embedding seeks to depict each network node via a compact, low-dimensional vector while effectively preserving the similarity between node pairs, which lays a strong foundation for a great many high-level network mining tasks. With the advent of the era of Big Data, the number of nodes and edges has reached billions in many real-world networks, which poses great computational and storage challenges to the existing methods. Although some algorithms have been developed to handle billion-scale networks, they often undergo accuracy degradation or tempo-spatial inefficiency owing to attribute information loss or substantial parameter learning. To this end, we propose a simple, time- and space-efficient billion-scale attributed network embedding algorithm called SketchBANE in this paper, which strikes an excellent balance between accuracy and efficiency by adopting sparse random projection with 1-bit quantization to sketch the iterative closed neighborhood and maintain the similarity among high-order nodes in a non-learning manner. The extensive experimental results indicate that our proposed SketchBANE algorithm competes favorably with the state-of-the-art approaches, while remarkably reducing runtime and space consumption. Also, the proposed SketchBANE algorithm exhibits good scalability and parallelization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
2024 Reviewers List Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction AEGK: Aligned Entropic Graph Kernels Through Continuous-Time Quantum Walks Contextual Inference From Sparse Shopping Transactions Based on Motif Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1