Alexander von Bank;Eike-Manuel Edelmann;Sisi Miao;Jonathan Mandelbaum;Laurent Schmalen
{"title":"短块长度LDPC码的尖峰神经信念传播解码器","authors":"Alexander von Bank;Eike-Manuel Edelmann;Sisi Miao;Jonathan Mandelbaum;Laurent Schmalen","doi":"10.1109/LCOMM.2024.3492711","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) are neural networks that enable energy-efficient signal processing due to their event-based nature. This letter proposes a novel decoding algorithm for low-density parity-check (LDPC) codes that integrates SNNs into belief propagation (BP) decoding by approximating the check node update equations using SNNs. For the (273,191) and (1023,781) finite-geometry LDPC code, the proposed decoder outperforms sum-product decoder at high signal-to-noise ratios (SNRs). The decoder achieves a similar bit error rate to normalized sum-product decoding with successive relaxation. Furthermore, the novel decoding operates without requiring knowledge of the SNR, making it robust to SNR mismatch.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"45-49"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10745601","citationCount":"0","resultStr":"{\"title\":\"Spiking Neural Belief Propagation Decoder for Short Block Length LDPC Codes\",\"authors\":\"Alexander von Bank;Eike-Manuel Edelmann;Sisi Miao;Jonathan Mandelbaum;Laurent Schmalen\",\"doi\":\"10.1109/LCOMM.2024.3492711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) are neural networks that enable energy-efficient signal processing due to their event-based nature. This letter proposes a novel decoding algorithm for low-density parity-check (LDPC) codes that integrates SNNs into belief propagation (BP) decoding by approximating the check node update equations using SNNs. For the (273,191) and (1023,781) finite-geometry LDPC code, the proposed decoder outperforms sum-product decoder at high signal-to-noise ratios (SNRs). The decoder achieves a similar bit error rate to normalized sum-product decoding with successive relaxation. Furthermore, the novel decoding operates without requiring knowledge of the SNR, making it robust to SNR mismatch.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 1\",\"pages\":\"45-49\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10745601\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745601/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745601/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Spiking Neural Belief Propagation Decoder for Short Block Length LDPC Codes
Spiking neural networks (SNNs) are neural networks that enable energy-efficient signal processing due to their event-based nature. This letter proposes a novel decoding algorithm for low-density parity-check (LDPC) codes that integrates SNNs into belief propagation (BP) decoding by approximating the check node update equations using SNNs. For the (273,191) and (1023,781) finite-geometry LDPC code, the proposed decoder outperforms sum-product decoder at high signal-to-noise ratios (SNRs). The decoder achieves a similar bit error rate to normalized sum-product decoding with successive relaxation. Furthermore, the novel decoding operates without requiring knowledge of the SNR, making it robust to SNR mismatch.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.