{"title":"用未测量混杂因素和工具变量联合建模的顺序因果效应估计","authors":"Zexu Sun;Bowei He;Shiqi Shen;Zhipeng Wang;Zhi Gong;Chen Ma;Qi Qi;Xu Chen","doi":"10.1109/TKDE.2024.3510734","DOIUrl":null,"url":null,"abstract":"Sequential causal effect estimation has recently attracted increasing attention from research and industry. While the existing models have achieved many successes, there are still many limitations. Existing models usually assume the causal graphs to be sufficient, i.e., there are no latent factors, such as the unmeasured confounders and instrumental variables. However, in real-world scenarios, it is hard to record all of the factors in the observational data, which makes the causally sufficient assumptions not hold. Moreover, existing models mainly focus on discrete treatments rather than continuous ones. To alleviate the above problems, in this paper, we propose a novel \n<bold>C</b>\nontinous \n<bold>C</b>\nausal \n<bold>M</b>\nodel by explicitly capturing the \n<bold>L</b>\natent \n<bold>F</b>\nactors (called \n<bold>C<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula>M-LF</b>\n for short). Specifically, we define a sequential causal graph by simultaneously considering the unmeasured confounders and instrumental variables. Second, we describe the independence that should be satisfied among different variables from the mutual information perspective and further propose our learning objective. Then, we reweight different samples in the continuous treatment space to optimize our model unbiasedly. Beyond the above designs, we also theoretically analyze our model’s causal identifiability and unbiasedness. Finally, we conduct extensive experiments on both simulation and real-world datasets to demonstrate the effectiveness of our proposed model.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 2","pages":"910-922"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Causal Effect Estimation by Jointly Modeling the Unmeasured Confounders and Instrumental Variables\",\"authors\":\"Zexu Sun;Bowei He;Shiqi Shen;Zhipeng Wang;Zhi Gong;Chen Ma;Qi Qi;Xu Chen\",\"doi\":\"10.1109/TKDE.2024.3510734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential causal effect estimation has recently attracted increasing attention from research and industry. While the existing models have achieved many successes, there are still many limitations. Existing models usually assume the causal graphs to be sufficient, i.e., there are no latent factors, such as the unmeasured confounders and instrumental variables. However, in real-world scenarios, it is hard to record all of the factors in the observational data, which makes the causally sufficient assumptions not hold. Moreover, existing models mainly focus on discrete treatments rather than continuous ones. To alleviate the above problems, in this paper, we propose a novel \\n<bold>C</b>\\nontinous \\n<bold>C</b>\\nausal \\n<bold>M</b>\\nodel by explicitly capturing the \\n<bold>L</b>\\natent \\n<bold>F</b>\\nactors (called \\n<bold>C<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula>M-LF</b>\\n for short). Specifically, we define a sequential causal graph by simultaneously considering the unmeasured confounders and instrumental variables. Second, we describe the independence that should be satisfied among different variables from the mutual information perspective and further propose our learning objective. Then, we reweight different samples in the continuous treatment space to optimize our model unbiasedly. Beyond the above designs, we also theoretically analyze our model’s causal identifiability and unbiasedness. Finally, we conduct extensive experiments on both simulation and real-world datasets to demonstrate the effectiveness of our proposed model.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 2\",\"pages\":\"910-922\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777296/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777296/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Sequential Causal Effect Estimation by Jointly Modeling the Unmeasured Confounders and Instrumental Variables
Sequential causal effect estimation has recently attracted increasing attention from research and industry. While the existing models have achieved many successes, there are still many limitations. Existing models usually assume the causal graphs to be sufficient, i.e., there are no latent factors, such as the unmeasured confounders and instrumental variables. However, in real-world scenarios, it is hard to record all of the factors in the observational data, which makes the causally sufficient assumptions not hold. Moreover, existing models mainly focus on discrete treatments rather than continuous ones. To alleviate the above problems, in this paper, we propose a novel
C
ontinous
C
ausal
M
odel by explicitly capturing the
L
atent
F
actors (called
C$^{2}$2M-LF
for short). Specifically, we define a sequential causal graph by simultaneously considering the unmeasured confounders and instrumental variables. Second, we describe the independence that should be satisfied among different variables from the mutual information perspective and further propose our learning objective. Then, we reweight different samples in the continuous treatment space to optimize our model unbiasedly. Beyond the above designs, we also theoretically analyze our model’s causal identifiability and unbiasedness. Finally, we conduct extensive experiments on both simulation and real-world datasets to demonstrate the effectiveness of our proposed model.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.