通过控制晶体应变揭示了PtCo双金属固溶体中氧还原活性的增强

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-11-11 DOI:10.1007/s40843-024-3166-2
Ning He  (, ), Shengqiang Wu  (, ), Wensong Yu  (, ), Fangrun Jin  (, ), Wenjun Xie  (, ), Xinxin Lu  (, ), Xiaoxu Zhao  (, ), Zhongxin Chen  (, ), Wenguang Tu  (, ), S. Y. Tong  (, )
{"title":"通过控制晶体应变揭示了PtCo双金属固溶体中氧还原活性的增强","authors":"Ning He \n (,&nbsp;),&nbsp;Shengqiang Wu \n (,&nbsp;),&nbsp;Wensong Yu \n (,&nbsp;),&nbsp;Fangrun Jin \n (,&nbsp;),&nbsp;Wenjun Xie \n (,&nbsp;),&nbsp;Xinxin Lu \n (,&nbsp;),&nbsp;Xiaoxu Zhao \n (,&nbsp;),&nbsp;Zhongxin Chen \n (,&nbsp;),&nbsp;Wenguang Tu \n (,&nbsp;),&nbsp;S. Y. Tong \n (,&nbsp;)","doi":"10.1007/s40843-024-3166-2","DOIUrl":null,"url":null,"abstract":"<div><p>The development of low-cost, highly active platinum (Pt)-based electrocatalysts for oxygen reduction reaction (ORR) is crucial for widespread applications of fuel cells. An effective approach lies in alloying Pt with non-noble transition metals to modulate the physicochemical state of the Pt surface. However, fundamental challenges remain in understanding the structure-performance relationship due to the complexity of composition, crystal type, and surface structure during the alloying process. In this study, we synthesized a series of PtCo bimetallic solid solutions with varying ratios using a liquid-phase synthesis method. By exploiting the characteristics of solid solutions, the resulting PtCo bimetallic alloy maintains the face-centered cubic crystal structure of pure platinum, minimizing the complexities introduced during alloying and facilitating mechanism analysis. Furthermore, under controlled alloy composition and crystal structure, we investigated the dependence of the electrocatalytic activity for the oxygen reduction reaction on the surface strain of the platinum catalyst. The S-PtCo-SNPs cathode designed accordingly endows both proton exchange membrane fuel cell (PEMFC) (2.08 W cm<sup>−2</sup> at 4 A cm<sup>−2</sup>) and Zn-air battery (ZAB) (143.1 mW cm<sup>−2</sup> at 214.5 mA cm<sup>−2</sup>) with outstanding performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"180 - 188"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling enhanced oxygen reduction activity in PtCo bimetallic solid solutions through controlled crystal strain\",\"authors\":\"Ning He \\n (,&nbsp;),&nbsp;Shengqiang Wu \\n (,&nbsp;),&nbsp;Wensong Yu \\n (,&nbsp;),&nbsp;Fangrun Jin \\n (,&nbsp;),&nbsp;Wenjun Xie \\n (,&nbsp;),&nbsp;Xinxin Lu \\n (,&nbsp;),&nbsp;Xiaoxu Zhao \\n (,&nbsp;),&nbsp;Zhongxin Chen \\n (,&nbsp;),&nbsp;Wenguang Tu \\n (,&nbsp;),&nbsp;S. Y. Tong \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3166-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of low-cost, highly active platinum (Pt)-based electrocatalysts for oxygen reduction reaction (ORR) is crucial for widespread applications of fuel cells. An effective approach lies in alloying Pt with non-noble transition metals to modulate the physicochemical state of the Pt surface. However, fundamental challenges remain in understanding the structure-performance relationship due to the complexity of composition, crystal type, and surface structure during the alloying process. In this study, we synthesized a series of PtCo bimetallic solid solutions with varying ratios using a liquid-phase synthesis method. By exploiting the characteristics of solid solutions, the resulting PtCo bimetallic alloy maintains the face-centered cubic crystal structure of pure platinum, minimizing the complexities introduced during alloying and facilitating mechanism analysis. Furthermore, under controlled alloy composition and crystal structure, we investigated the dependence of the electrocatalytic activity for the oxygen reduction reaction on the surface strain of the platinum catalyst. The S-PtCo-SNPs cathode designed accordingly endows both proton exchange membrane fuel cell (PEMFC) (2.08 W cm<sup>−2</sup> at 4 A cm<sup>−2</sup>) and Zn-air battery (ZAB) (143.1 mW cm<sup>−2</sup> at 214.5 mA cm<sup>−2</sup>) with outstanding performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 1\",\"pages\":\"180 - 188\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3166-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3166-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发低成本、高活性的铂基氧还原反应电催化剂对燃料电池的广泛应用至关重要。一种有效的方法是将Pt与非贵金属过渡金属合金化,以调节Pt表面的物理化学状态。然而,由于合金过程中成分、晶体类型和表面结构的复杂性,在理解结构-性能关系方面仍然存在根本性的挑战。在本研究中,我们采用液相合成方法合成了一系列不同比例的PtCo双金属固溶体。通过利用固溶体的特性,得到的PtCo双金属合金保持了纯铂的面心立方晶体结构,最大限度地减少了合金化过程中引入的复杂性,便于机理分析。此外,在控制合金成分和晶体结构的情况下,我们研究了铂催化剂的表面应变对氧还原反应电催化活性的影响。设计的S-PtCo-SNPs阴极使质子交换膜燃料电池(PEMFC)(在4 A cm−2时为2.08 W cm−2)和锌空气电池(ZAB)(在214.5 mA cm−2时为143.1 mW cm−2)具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling enhanced oxygen reduction activity in PtCo bimetallic solid solutions through controlled crystal strain

The development of low-cost, highly active platinum (Pt)-based electrocatalysts for oxygen reduction reaction (ORR) is crucial for widespread applications of fuel cells. An effective approach lies in alloying Pt with non-noble transition metals to modulate the physicochemical state of the Pt surface. However, fundamental challenges remain in understanding the structure-performance relationship due to the complexity of composition, crystal type, and surface structure during the alloying process. In this study, we synthesized a series of PtCo bimetallic solid solutions with varying ratios using a liquid-phase synthesis method. By exploiting the characteristics of solid solutions, the resulting PtCo bimetallic alloy maintains the face-centered cubic crystal structure of pure platinum, minimizing the complexities introduced during alloying and facilitating mechanism analysis. Furthermore, under controlled alloy composition and crystal structure, we investigated the dependence of the electrocatalytic activity for the oxygen reduction reaction on the surface strain of the platinum catalyst. The S-PtCo-SNPs cathode designed accordingly endows both proton exchange membrane fuel cell (PEMFC) (2.08 W cm−2 at 4 A cm−2) and Zn-air battery (ZAB) (143.1 mW cm−2 at 214.5 mA cm−2) with outstanding performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Hollow MnO2-based multifunctional nanoplatform for enhanced tumor chemodynamic therapy Advancements in in-situ transmission electron microscopy for comprehensive analysis of heterogeneous catalysis: insights into the nanoscale dynamic processes Anion-induced opposite mechanochromic and thermochromic emission directions of protonated hydrazones Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction Unraveling the colloidal composition of perovskite precursor solutions and its impact on film formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1