通过共价有机骨架的分子工程,高效选择性光催化CO2还原为CO

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-11-12 DOI:10.1007/s40843-024-3168-3
Wenling Zhao  (, ), Lei Sun  (, ), Li Yang  (, ), Ruiling Zhang  (, ), Guoqing Ren  (, ), Sen Wang  (, ), Hao Wu  (, ), Xinchen Kang  (, ), Wei-Qiao Deng  (, ), Chengcheng Liu  (, )
{"title":"通过共价有机骨架的分子工程,高效选择性光催化CO2还原为CO","authors":"Wenling Zhao \n (,&nbsp;),&nbsp;Lei Sun \n (,&nbsp;),&nbsp;Li Yang \n (,&nbsp;),&nbsp;Ruiling Zhang \n (,&nbsp;),&nbsp;Guoqing Ren \n (,&nbsp;),&nbsp;Sen Wang \n (,&nbsp;),&nbsp;Hao Wu \n (,&nbsp;),&nbsp;Xinchen Kang \n (,&nbsp;),&nbsp;Wei-Qiao Deng \n (,&nbsp;),&nbsp;Chengcheng Liu \n (,&nbsp;)","doi":"10.1007/s40843-024-3168-3","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) are garnering significant interest in photocatalytic CO<sub>2</sub> reduction. However, their limited efficiency in separating photogenerated carriers and the scarcity of catalytic sites lead to suboptimal photocatalytic performance. Here we develop a molecular engineering approach to design a pyrene-based COF (PyTa-H COF) confined cobalt single atoms photocatalyst (Co SACs) for CO<sub>2</sub> reduction. Pyrene moiety is introduced to enhance visible-light harvesting capability and improve charge separation in the COF. Subsequently, Co SACs enhance the photocatalytic activity by accelerating the migration of photo-induced carriers and reducing the reaction energy of the rate-determining step. Remarkably, PyTa-H@Co achieves a CO production rate of 18.36 mmol g<sup>−1</sup> h<sup>−1</sup> and a selectivity of 94% in 4 h under visible light irradiation, which is comparable to the reported best-performing COFs. Density functional theory calculations reveal that the Co SACs greatly stabilize *COOH and significantly reduce the energy of the decisive step, leading to outstanding photocatalytic performance. This work, through molecular engineering design, highlights the critical relationship between catalyst structure and function in enhancing photocatalytic efficiency.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"165 - 172"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient and selective photocatalytic CO2 reduction to CO via molecular engineering of covalent organic framework\",\"authors\":\"Wenling Zhao \\n (,&nbsp;),&nbsp;Lei Sun \\n (,&nbsp;),&nbsp;Li Yang \\n (,&nbsp;),&nbsp;Ruiling Zhang \\n (,&nbsp;),&nbsp;Guoqing Ren \\n (,&nbsp;),&nbsp;Sen Wang \\n (,&nbsp;),&nbsp;Hao Wu \\n (,&nbsp;),&nbsp;Xinchen Kang \\n (,&nbsp;),&nbsp;Wei-Qiao Deng \\n (,&nbsp;),&nbsp;Chengcheng Liu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3168-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covalent organic frameworks (COFs) are garnering significant interest in photocatalytic CO<sub>2</sub> reduction. However, their limited efficiency in separating photogenerated carriers and the scarcity of catalytic sites lead to suboptimal photocatalytic performance. Here we develop a molecular engineering approach to design a pyrene-based COF (PyTa-H COF) confined cobalt single atoms photocatalyst (Co SACs) for CO<sub>2</sub> reduction. Pyrene moiety is introduced to enhance visible-light harvesting capability and improve charge separation in the COF. Subsequently, Co SACs enhance the photocatalytic activity by accelerating the migration of photo-induced carriers and reducing the reaction energy of the rate-determining step. Remarkably, PyTa-H@Co achieves a CO production rate of 18.36 mmol g<sup>−1</sup> h<sup>−1</sup> and a selectivity of 94% in 4 h under visible light irradiation, which is comparable to the reported best-performing COFs. Density functional theory calculations reveal that the Co SACs greatly stabilize *COOH and significantly reduce the energy of the decisive step, leading to outstanding photocatalytic performance. This work, through molecular engineering design, highlights the critical relationship between catalyst structure and function in enhancing photocatalytic efficiency.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 1\",\"pages\":\"165 - 172\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3168-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3168-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)在光催化CO2还原中引起了极大的兴趣。然而,它们在分离光生成载体方面的效率有限,催化位点的稀缺性导致其光催化性能不理想。本文采用分子工程方法设计了一种吡啶基COF (PyTa-H COF)限制钴单原子光催化剂(Co SACs),用于CO2还原。在COF中引入芘基团以提高可见光捕获能力和改善电荷分离。随后,Co SACs通过加速光诱导载流子的迁移和降低速率决定步骤的反应能量来增强光催化活性。值得注意的是,PyTa-H@Co在可见光照射下4小时的CO产率为18.36 mmol g−1 h−1,选择性为94%,与报道的最佳COFs相当。密度泛函理论计算表明,Co SACs极大地稳定了*COOH,并显著降低了决定性步骤的能量,从而获得了出色的光催化性能。本工作通过分子工程设计,突出了催化剂结构和功能在提高光催化效率方面的关键关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly efficient and selective photocatalytic CO2 reduction to CO via molecular engineering of covalent organic framework

Covalent organic frameworks (COFs) are garnering significant interest in photocatalytic CO2 reduction. However, their limited efficiency in separating photogenerated carriers and the scarcity of catalytic sites lead to suboptimal photocatalytic performance. Here we develop a molecular engineering approach to design a pyrene-based COF (PyTa-H COF) confined cobalt single atoms photocatalyst (Co SACs) for CO2 reduction. Pyrene moiety is introduced to enhance visible-light harvesting capability and improve charge separation in the COF. Subsequently, Co SACs enhance the photocatalytic activity by accelerating the migration of photo-induced carriers and reducing the reaction energy of the rate-determining step. Remarkably, PyTa-H@Co achieves a CO production rate of 18.36 mmol g−1 h−1 and a selectivity of 94% in 4 h under visible light irradiation, which is comparable to the reported best-performing COFs. Density functional theory calculations reveal that the Co SACs greatly stabilize *COOH and significantly reduce the energy of the decisive step, leading to outstanding photocatalytic performance. This work, through molecular engineering design, highlights the critical relationship between catalyst structure and function in enhancing photocatalytic efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Recent advances in wearable electrochemical sensors for in situ detection of biochemical markers Advancing a thriving materials science community: the 2025 Emerging Investigator Issue of Science China Materials Tailoring small-molecule acceptors through asymmetric side-chain substitution for efficient organic solar cells Integrating solar-driven water splitting with benzyl alcohol oxidation on ZnIn2S4 with Ni–N channel Coupling regulation for achieving high-efficient UOR performance of amorphous Ni-P catalyst by pulse electrodeposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1