多功能Cu3BiS3-BP@PEI具有增强活性氧活性的放射增敏剂用于多模式协同治疗。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-01-10 DOI:10.1021/acsbiomaterials.4c01907
Hanping Fu, Yan Xie, Shufen Ren, Qing Zhang, Jiayun Cheng, Qingshuang Liang, Xiufeng Xiao
{"title":"多功能Cu3BiS3-BP@PEI具有增强活性氧活性的放射增敏剂用于多模式协同治疗。","authors":"Hanping Fu, Yan Xie, Shufen Ren, Qing Zhang, Jiayun Cheng, Qingshuang Liang, Xiufeng Xiao","doi":"10.1021/acsbiomaterials.4c01907","DOIUrl":null,"url":null,"abstract":"<p><p>Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed. Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI NHS is able to deposit a high radiation dose into cancer cells, enhancing the radiotherapy effect. Due to the heterostructure and the synergistic effect of Cu<sub>3</sub>BiS<sub>3</sub> and black phosphorus (BP), significantly boosted <sup>1</sup>O<sub>2</sub> and •OH generation is obtained under X-ray irradiation, which is promising for extremely efficient radiodynamic therapy. More importantly, the acidic tumor microenvironment (TME) can induce the cycle conversion of Cu<sup>2+</sup> to Cu<sup>+</sup>, oxidizing glutathione (GSH) and catalyzing intracellular overproduction of H<sub>2</sub>O<sub>2</sub> into highly toxic •OH, which thus further enhances reactive oxygen species (ROS) production and reduces GSH-associated radioresistance. Furthermore, Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI NHS has an excellent photothermal effect and can effectively transform light into heat. The outcomes of the in vitro and in vivo research confirm that the as-prepared Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI NHS has a high synergistic therapeutic efficacy at a low radiation dose. This work provides a viable approach to constructing a multifunctional radiosensitizer for deep tumor treatment with TME-triggered multiple synergistic therapies.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI Radiosensitizer with Enhanced Reactive Oxygen Species Activity for Multimodal Synergistic Therapy.\",\"authors\":\"Hanping Fu, Yan Xie, Shufen Ren, Qing Zhang, Jiayun Cheng, Qingshuang Liang, Xiufeng Xiao\",\"doi\":\"10.1021/acsbiomaterials.4c01907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed. Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI NHS is able to deposit a high radiation dose into cancer cells, enhancing the radiotherapy effect. Due to the heterostructure and the synergistic effect of Cu<sub>3</sub>BiS<sub>3</sub> and black phosphorus (BP), significantly boosted <sup>1</sup>O<sub>2</sub> and •OH generation is obtained under X-ray irradiation, which is promising for extremely efficient radiodynamic therapy. More importantly, the acidic tumor microenvironment (TME) can induce the cycle conversion of Cu<sup>2+</sup> to Cu<sup>+</sup>, oxidizing glutathione (GSH) and catalyzing intracellular overproduction of H<sub>2</sub>O<sub>2</sub> into highly toxic •OH, which thus further enhances reactive oxygen species (ROS) production and reduces GSH-associated radioresistance. Furthermore, Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI NHS has an excellent photothermal effect and can effectively transform light into heat. The outcomes of the in vitro and in vivo research confirm that the as-prepared Cu<sub>3</sub>BiS<sub>3</sub>-BP@PEI NHS has a high synergistic therapeutic efficacy at a low radiation dose. This work provides a viable approach to constructing a multifunctional radiosensitizer for deep tumor treatment with TME-triggered multiple synergistic therapies.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c01907\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01907","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

开发具有高能沉积效率、电子转移和氧化应激放大功能的放射增敏剂将有助于提高放射治疗效率。为了克服单纯放疗的弊端,设计一种同时实现多模式治疗和肿瘤微环境调节的多功能放射增敏剂也至关重要。本文设计了一种基于Cu3BiS3-BP@PEI纳米异质结构(NHS)的多功能放射增敏剂,用于多模式癌症治疗。Cu3BiS3-BP@PEI NHS能够将高剂量的辐射沉积到癌细胞中,增强放疗效果。由于Cu3BiS3和黑磷(BP)的异质结构和协同作用,在x射线照射下可显著促进1O2和•OH的生成,有望成为极有效的放射动力学治疗。更重要的是,酸性肿瘤微环境(TME)可以诱导Cu2+循环转化为Cu+,氧化谷胱甘肽(GSH),并催化细胞内过量的H2O2生成高毒性的•OH,从而进一步增强活性氧(ROS)的产生,降低GSH相关的辐射抗性。此外,Cu3BiS3-BP@PEI NHS具有优异的光热效应,可以有效地将光转化为热。体外和体内研究结果证实,制备的Cu3BiS3-BP@PEI NHS在低辐射剂量下具有较高的协同治疗效果。这项工作为构建一种多功能放射增敏剂提供了一种可行的方法,用于tme触发的多重协同治疗深部肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional Cu3BiS3-BP@PEI Radiosensitizer with Enhanced Reactive Oxygen Species Activity for Multimodal Synergistic Therapy.

Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the Cu3BiS3-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed. Cu3BiS3-BP@PEI NHS is able to deposit a high radiation dose into cancer cells, enhancing the radiotherapy effect. Due to the heterostructure and the synergistic effect of Cu3BiS3 and black phosphorus (BP), significantly boosted 1O2 and •OH generation is obtained under X-ray irradiation, which is promising for extremely efficient radiodynamic therapy. More importantly, the acidic tumor microenvironment (TME) can induce the cycle conversion of Cu2+ to Cu+, oxidizing glutathione (GSH) and catalyzing intracellular overproduction of H2O2 into highly toxic •OH, which thus further enhances reactive oxygen species (ROS) production and reduces GSH-associated radioresistance. Furthermore, Cu3BiS3-BP@PEI NHS has an excellent photothermal effect and can effectively transform light into heat. The outcomes of the in vitro and in vivo research confirm that the as-prepared Cu3BiS3-BP@PEI NHS has a high synergistic therapeutic efficacy at a low radiation dose. This work provides a viable approach to constructing a multifunctional radiosensitizer for deep tumor treatment with TME-triggered multiple synergistic therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Issue Publication Information Issue Editorial Masthead Spiked Systems for Colonic Drug Delivery: Architectural Opportunities and Quality Assurance of Selective Laser Sintering. Electrospun Biomimetic Periosteum Promotes Diabetic Bone Defect Regeneration through Regulating Macrophage Polarization and Sequential Drug Release. Freeze-Dried Porous Collagen Scaffolds for the Repair of Volumetric Muscle Loss Injuries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1