{"title":"离亲戚太远?遗传距离对系统基因组中外显子捕获成功的影响。","authors":"Lemarcis Thomas, Blin Amandine, Cariou Marie, Derzelle Alessandro, Farhat Sarah, Fedosov Alexander, Zaharias Paul, Zuccon Dario, Puillandre Nicolas","doi":"10.1111/1755-0998.14064","DOIUrl":null,"url":null,"abstract":"<p><p>The exon capture approach allows for sequencing a large number of loci to reconstruct phylogenetic relationships at varying taxonomic levels. In order to efficiently recover the targeted loci, the probes designed to capture the exons need to be genetically sufficiently similar to bind to the DNA, with a proposed limit of 10% of divergence. However, this threshold has never been tested with a specific protocol. We have designed a set of probes to capture 1125 exons in the Neogastropoda (Mollusca, Gastropoda), processed with the same protocol from the field to the DNA sequencing to control for potential bias in DNA quantity and quality. We sequenced 30 different species, including 14 species of Neogastropoda and 16 species of Caenogastropoda non-Neogastropoda. Each species includes five specimens, for a total of 150 specimens, and for four specimens among the 150, DNA extracts were aliquoted in four samples, sequenced separately, to estimate the intraspecific and intraspecimen variability in capture success. Our results confirm the impact of genetic distance on the success of exon capture with a negative linear correlation between the genetic distance and the number of exons captured for each sample. Consequently, designing new capture probes would allow for capturing exons in genetically more distant groups without the need to redesign a new set of exons.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14064"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Too Far From Relatives? Impact of the Genetic Distance on the Success of Exon Capture in Phylogenomics.\",\"authors\":\"Lemarcis Thomas, Blin Amandine, Cariou Marie, Derzelle Alessandro, Farhat Sarah, Fedosov Alexander, Zaharias Paul, Zuccon Dario, Puillandre Nicolas\",\"doi\":\"10.1111/1755-0998.14064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exon capture approach allows for sequencing a large number of loci to reconstruct phylogenetic relationships at varying taxonomic levels. In order to efficiently recover the targeted loci, the probes designed to capture the exons need to be genetically sufficiently similar to bind to the DNA, with a proposed limit of 10% of divergence. However, this threshold has never been tested with a specific protocol. We have designed a set of probes to capture 1125 exons in the Neogastropoda (Mollusca, Gastropoda), processed with the same protocol from the field to the DNA sequencing to control for potential bias in DNA quantity and quality. We sequenced 30 different species, including 14 species of Neogastropoda and 16 species of Caenogastropoda non-Neogastropoda. Each species includes five specimens, for a total of 150 specimens, and for four specimens among the 150, DNA extracts were aliquoted in four samples, sequenced separately, to estimate the intraspecific and intraspecimen variability in capture success. Our results confirm the impact of genetic distance on the success of exon capture with a negative linear correlation between the genetic distance and the number of exons captured for each sample. Consequently, designing new capture probes would allow for capturing exons in genetically more distant groups without the need to redesign a new set of exons.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14064\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14064\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14064","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Too Far From Relatives? Impact of the Genetic Distance on the Success of Exon Capture in Phylogenomics.
The exon capture approach allows for sequencing a large number of loci to reconstruct phylogenetic relationships at varying taxonomic levels. In order to efficiently recover the targeted loci, the probes designed to capture the exons need to be genetically sufficiently similar to bind to the DNA, with a proposed limit of 10% of divergence. However, this threshold has never been tested with a specific protocol. We have designed a set of probes to capture 1125 exons in the Neogastropoda (Mollusca, Gastropoda), processed with the same protocol from the field to the DNA sequencing to control for potential bias in DNA quantity and quality. We sequenced 30 different species, including 14 species of Neogastropoda and 16 species of Caenogastropoda non-Neogastropoda. Each species includes five specimens, for a total of 150 specimens, and for four specimens among the 150, DNA extracts were aliquoted in four samples, sequenced separately, to estimate the intraspecific and intraspecimen variability in capture success. Our results confirm the impact of genetic distance on the success of exon capture with a negative linear correlation between the genetic distance and the number of exons captured for each sample. Consequently, designing new capture probes would allow for capturing exons in genetically more distant groups without the need to redesign a new set of exons.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.