离亲戚太远?遗传距离对系统基因组中外显子捕获成功的影响。

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Resources Pub Date : 2025-01-09 DOI:10.1111/1755-0998.14064
Lemarcis Thomas, Blin Amandine, Cariou Marie, Derzelle Alessandro, Farhat Sarah, Fedosov Alexander, Zaharias Paul, Zuccon Dario, Puillandre Nicolas
{"title":"离亲戚太远?遗传距离对系统基因组中外显子捕获成功的影响。","authors":"Lemarcis Thomas, Blin Amandine, Cariou Marie, Derzelle Alessandro, Farhat Sarah, Fedosov Alexander, Zaharias Paul, Zuccon Dario, Puillandre Nicolas","doi":"10.1111/1755-0998.14064","DOIUrl":null,"url":null,"abstract":"<p><p>The exon capture approach allows for sequencing a large number of loci to reconstruct phylogenetic relationships at varying taxonomic levels. In order to efficiently recover the targeted loci, the probes designed to capture the exons need to be genetically sufficiently similar to bind to the DNA, with a proposed limit of 10% of divergence. However, this threshold has never been tested with a specific protocol. We have designed a set of probes to capture 1125 exons in the Neogastropoda (Mollusca, Gastropoda), processed with the same protocol from the field to the DNA sequencing to control for potential bias in DNA quantity and quality. We sequenced 30 different species, including 14 species of Neogastropoda and 16 species of Caenogastropoda non-Neogastropoda. Each species includes five specimens, for a total of 150 specimens, and for four specimens among the 150, DNA extracts were aliquoted in four samples, sequenced separately, to estimate the intraspecific and intraspecimen variability in capture success. Our results confirm the impact of genetic distance on the success of exon capture with a negative linear correlation between the genetic distance and the number of exons captured for each sample. Consequently, designing new capture probes would allow for capturing exons in genetically more distant groups without the need to redesign a new set of exons.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14064"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Too Far From Relatives? Impact of the Genetic Distance on the Success of Exon Capture in Phylogenomics.\",\"authors\":\"Lemarcis Thomas, Blin Amandine, Cariou Marie, Derzelle Alessandro, Farhat Sarah, Fedosov Alexander, Zaharias Paul, Zuccon Dario, Puillandre Nicolas\",\"doi\":\"10.1111/1755-0998.14064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exon capture approach allows for sequencing a large number of loci to reconstruct phylogenetic relationships at varying taxonomic levels. In order to efficiently recover the targeted loci, the probes designed to capture the exons need to be genetically sufficiently similar to bind to the DNA, with a proposed limit of 10% of divergence. However, this threshold has never been tested with a specific protocol. We have designed a set of probes to capture 1125 exons in the Neogastropoda (Mollusca, Gastropoda), processed with the same protocol from the field to the DNA sequencing to control for potential bias in DNA quantity and quality. We sequenced 30 different species, including 14 species of Neogastropoda and 16 species of Caenogastropoda non-Neogastropoda. Each species includes five specimens, for a total of 150 specimens, and for four specimens among the 150, DNA extracts were aliquoted in four samples, sequenced separately, to estimate the intraspecific and intraspecimen variability in capture success. Our results confirm the impact of genetic distance on the success of exon capture with a negative linear correlation between the genetic distance and the number of exons captured for each sample. Consequently, designing new capture probes would allow for capturing exons in genetically more distant groups without the need to redesign a new set of exons.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14064\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14064\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14064","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

外显子捕获方法允许对大量基因座进行测序,以在不同的分类水平上重建系统发育关系。为了有效地恢复目标位点,设计用于捕获外显子的探针需要在基因上足够相似以与DNA结合,建议的差异限制为10%。然而,这个阈值从未在特定协议中进行过测试。我们设计了一套探针来捕获新腹足动物(软体动物,腹足动物)的1125个外显子,从野外到DNA测序都采用相同的处理方案,以控制DNA数量和质量的潜在偏差。对30种昆虫进行了测序,其中新腹足目14种,非新腹足目16种。每个物种包括5个标本,总共150个标本,其中4个标本的DNA提取物被引用,分别测序,以估计捕获成功的种内和种内变异性。我们的结果证实了遗传距离对外显子捕获成功的影响,遗传距离与每个样品捕获的外显子数量之间呈负线性相关。因此,设计新的捕获探针将允许在不需要重新设计一组新的外显子的情况下捕获遗传上更远的群体中的外显子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Too Far From Relatives? Impact of the Genetic Distance on the Success of Exon Capture in Phylogenomics.

The exon capture approach allows for sequencing a large number of loci to reconstruct phylogenetic relationships at varying taxonomic levels. In order to efficiently recover the targeted loci, the probes designed to capture the exons need to be genetically sufficiently similar to bind to the DNA, with a proposed limit of 10% of divergence. However, this threshold has never been tested with a specific protocol. We have designed a set of probes to capture 1125 exons in the Neogastropoda (Mollusca, Gastropoda), processed with the same protocol from the field to the DNA sequencing to control for potential bias in DNA quantity and quality. We sequenced 30 different species, including 14 species of Neogastropoda and 16 species of Caenogastropoda non-Neogastropoda. Each species includes five specimens, for a total of 150 specimens, and for four specimens among the 150, DNA extracts were aliquoted in four samples, sequenced separately, to estimate the intraspecific and intraspecimen variability in capture success. Our results confirm the impact of genetic distance on the success of exon capture with a negative linear correlation between the genetic distance and the number of exons captured for each sample. Consequently, designing new capture probes would allow for capturing exons in genetically more distant groups without the need to redesign a new set of exons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
期刊最新文献
Next-Generation Snow Leopard Population Assessment Tool: Multiplex-PCR SNP Panel for Individual Identification From Faeces. A Long-Term Ecological Research Data Set From the Marine Genetic Monitoring Program ARMS-MBON 2018-2020. Comparative Genomics Points to Ecological Drivers of Genomic Divergence Among Intertidal Limpets. Quantifying Bone Collagen Fingerprint Variation Between Species. Pangenomics Links Boll Weevil Divergence With Ancient Mesoamerican Cotton Cultivation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1