非洲地区多中心艾滋病毒随机对照试验分析的统计方法:范围审查。

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2025-01-08 DOI:10.1186/s12874-024-02441-w
Mikateko Mazinu, Nomonde Gwebushe, Samuel Manda, Tarylee Reddy
{"title":"非洲地区多中心艾滋病毒随机对照试验分析的统计方法:范围审查。","authors":"Mikateko Mazinu, Nomonde Gwebushe, Samuel Manda, Tarylee Reddy","doi":"10.1186/s12874-024-02441-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The majority of phase 3 clinical trials are implemented in multiple sites or centres, which inevitably leads to a correlation between observations from the same site or centre. This correlation must be carefully considered in both the design and the statistical analysis to ensure an accurate interpretation of the results and reduce the risk of biased results. This scoping review aims to provide a detailed statistical method used to analyze data collected from multicentre HIV randomized controlled trials in the African region.</p><p><strong>Methods: </strong>This review followed the methodological framework proposed by Arksey and O'Malley. We searched four databases (PubMed, EBSCOhost, Scopus, and Web of Science) and retrieved 977 articles, 34 of which were included in the review.</p><p><strong>Results: </strong>Data charting revealed that the most used statistical methods for analysing HIV endpoints in multicentre randomized controlled trials in Africa were standard survival analysis techniques (24 articles [71%]). Approximately 47% of the articles used stratified analysis methods to account for variations across different sites. Out of 34 articles reviewed, only 6 explicitly considered intra-site correlation in the analysis.</p><p><strong>Conclusions: </strong>Our scoping review provides insights into the statistical methods used to analyse HIV data in multicentre randomized controlled trials in Africa and highlights the need for standardized reporting of statistical methods.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"3"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Statistical methods in the analysis of multicentre HIV randomized controlled trials in the African region: a scoping review.\",\"authors\":\"Mikateko Mazinu, Nomonde Gwebushe, Samuel Manda, Tarylee Reddy\",\"doi\":\"10.1186/s12874-024-02441-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The majority of phase 3 clinical trials are implemented in multiple sites or centres, which inevitably leads to a correlation between observations from the same site or centre. This correlation must be carefully considered in both the design and the statistical analysis to ensure an accurate interpretation of the results and reduce the risk of biased results. This scoping review aims to provide a detailed statistical method used to analyze data collected from multicentre HIV randomized controlled trials in the African region.</p><p><strong>Methods: </strong>This review followed the methodological framework proposed by Arksey and O'Malley. We searched four databases (PubMed, EBSCOhost, Scopus, and Web of Science) and retrieved 977 articles, 34 of which were included in the review.</p><p><strong>Results: </strong>Data charting revealed that the most used statistical methods for analysing HIV endpoints in multicentre randomized controlled trials in Africa were standard survival analysis techniques (24 articles [71%]). Approximately 47% of the articles used stratified analysis methods to account for variations across different sites. Out of 34 articles reviewed, only 6 explicitly considered intra-site correlation in the analysis.</p><p><strong>Conclusions: </strong>Our scoping review provides insights into the statistical methods used to analyse HIV data in multicentre randomized controlled trials in Africa and highlights the need for standardized reporting of statistical methods.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"25 1\",\"pages\":\"3\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02441-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02441-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:大多数3期临床试验在多个地点或中心进行,这不可避免地导致来自同一地点或中心的观察结果之间的相关性。在设计和统计分析中必须仔细考虑这种相关性,以确保对结果的准确解释并减少结果偏差的风险。这项范围审查的目的是提供一种详细的统计方法,用于分析从非洲地区的多中心艾滋病毒随机对照试验收集的数据。方法:本综述遵循Arksey和O'Malley提出的方法框架。我们检索了四个数据库(PubMed、EBSCOhost、Scopus和Web of Science),检索到977篇文章,其中34篇被纳入综述。结果:数据图表显示,在非洲的多中心随机对照试验中,用于分析HIV终点的最常用统计方法是标准生存分析技术(24篇文章[71%])。大约47%的文章使用分层分析方法来解释不同地点的差异。在回顾的34篇文章中,只有6篇在分析中明确考虑了位点内相关性。结论:我们的范围综述提供了对非洲多中心随机对照试验中用于分析艾滋病毒数据的统计方法的见解,并强调了统计方法标准化报告的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical methods in the analysis of multicentre HIV randomized controlled trials in the African region: a scoping review.

Background: The majority of phase 3 clinical trials are implemented in multiple sites or centres, which inevitably leads to a correlation between observations from the same site or centre. This correlation must be carefully considered in both the design and the statistical analysis to ensure an accurate interpretation of the results and reduce the risk of biased results. This scoping review aims to provide a detailed statistical method used to analyze data collected from multicentre HIV randomized controlled trials in the African region.

Methods: This review followed the methodological framework proposed by Arksey and O'Malley. We searched four databases (PubMed, EBSCOhost, Scopus, and Web of Science) and retrieved 977 articles, 34 of which were included in the review.

Results: Data charting revealed that the most used statistical methods for analysing HIV endpoints in multicentre randomized controlled trials in Africa were standard survival analysis techniques (24 articles [71%]). Approximately 47% of the articles used stratified analysis methods to account for variations across different sites. Out of 34 articles reviewed, only 6 explicitly considered intra-site correlation in the analysis.

Conclusions: Our scoping review provides insights into the statistical methods used to analyse HIV data in multicentre randomized controlled trials in Africa and highlights the need for standardized reporting of statistical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
A generative model for evaluating missing data methods in large epidemiological cohorts. Discrepancies in safety reporting for chronic back pain clinical trials: an observational study from ClinicalTrials.gov and publications. Multiple states clustering analysis (MSCA), an unsupervised approach to multiple time-to-event electronic health records applied to multimorbidity associated with myocardial infarction. Matching plus regression adjustment for the estimation of the average treatment effect on survival outcomes: a case study with mosunetuzumab in relapsed/refractory follicular lymphoma. Protocol publication rate and comparison between article, registry and protocol in RCTs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1