Claudius Melzig, Oliver Weinheimer, Benjamin Egenlauf, Thuy D Do, Mark O Wielpütz, Ekkehard Grünig, Hans-Ulrich Kauczor, Claus Peter Heussel, Fabian Rengier
{"title":"在计算机断层血管造影上对核心和剥离肺内血管进行自动容量测定,用于肺动脉高压患者的无创血流动力学评估(2022年更新的血流动力学定义)。","authors":"Claudius Melzig, Oliver Weinheimer, Benjamin Egenlauf, Thuy D Do, Mark O Wielpütz, Ekkehard Grünig, Hans-Ulrich Kauczor, Claus Peter Heussel, Fabian Rengier","doi":"10.21037/cdt-24-293","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Computed tomography pulmonary angiography (CTPA) is frequently performed in patients with pulmonary hypertension (PH) and may aid non-invasive estimation of pulmonary hemodynamics. We, therefore, investigated automated volumetry of intrapulmonary vasculature on CTPA, separated into core and peel fractions of the lung volume and its potential to differentially reflect pulmonary hemodynamics in patients with pre- and postcapillary PH.</p><p><strong>Methods: </strong>A retrospective case-control study of 72 consecutive patients with PH according to the 2022 joint guidelines of the European Society of Cardiology and the European Respiratory Society who underwent right heart catheterization (RHC) and CTPA within 7 days between August 2013 and February 2016 at Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany) was conducted. Vessel segmentation was performed using the in-house software YACTA. Vascular volumes in different core and peel fractions of the lung were corrected for body surface area. Spearman correlation coefficients with mean pulmonary arterial pressure (mPAP), pulmonary arterial wedge pressure (PAWP) and pulmonary vascular resistance (PVR) were calculated, and a linear regression analysis was done to account for potential confounders.</p><p><strong>Results: </strong>Median age of the study sample was 71.5 years [interquartile range (IQR), 60.0-77.0 years], 48 (66.67%) were female. Median mPAP was 35.5 mmHg (IQR, 27.0-47.2 mmHg). Postcapillary PH was present in 24/72 (33.3%) patients and precapillary PH in 48/72 (66.7%) patients. Moderate to strong correlations between core intrapulmonary vessel volumes and mPAP were observed in postcapillary PH patients with a maximum at 50% core lung volume (r=0.71, P<0.001). No significant influence of age or sex on this relationship was identified. Correlation with RHC measurements was weak or negligible in patients with precapillary PH.</p><p><strong>Conclusions: </strong>Automated volumetry of vessels in the core lung strongly correlated with mPAP in patients with postcapillary PH and has potential for non-invasive assessment of postcapillary PH in patients undergoing CTPA.</p>","PeriodicalId":9592,"journal":{"name":"Cardiovascular diagnosis and therapy","volume":"14 6","pages":"1083-1095"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707475/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated volumetry of core and peel intrapulmonary vasculature on computed tomography angiography for non-invasive estimation of hemodynamics in patients with pulmonary hypertension (2022 updated hemodynamic definition).\",\"authors\":\"Claudius Melzig, Oliver Weinheimer, Benjamin Egenlauf, Thuy D Do, Mark O Wielpütz, Ekkehard Grünig, Hans-Ulrich Kauczor, Claus Peter Heussel, Fabian Rengier\",\"doi\":\"10.21037/cdt-24-293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Computed tomography pulmonary angiography (CTPA) is frequently performed in patients with pulmonary hypertension (PH) and may aid non-invasive estimation of pulmonary hemodynamics. We, therefore, investigated automated volumetry of intrapulmonary vasculature on CTPA, separated into core and peel fractions of the lung volume and its potential to differentially reflect pulmonary hemodynamics in patients with pre- and postcapillary PH.</p><p><strong>Methods: </strong>A retrospective case-control study of 72 consecutive patients with PH according to the 2022 joint guidelines of the European Society of Cardiology and the European Respiratory Society who underwent right heart catheterization (RHC) and CTPA within 7 days between August 2013 and February 2016 at Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany) was conducted. Vessel segmentation was performed using the in-house software YACTA. Vascular volumes in different core and peel fractions of the lung were corrected for body surface area. Spearman correlation coefficients with mean pulmonary arterial pressure (mPAP), pulmonary arterial wedge pressure (PAWP) and pulmonary vascular resistance (PVR) were calculated, and a linear regression analysis was done to account for potential confounders.</p><p><strong>Results: </strong>Median age of the study sample was 71.5 years [interquartile range (IQR), 60.0-77.0 years], 48 (66.67%) were female. Median mPAP was 35.5 mmHg (IQR, 27.0-47.2 mmHg). Postcapillary PH was present in 24/72 (33.3%) patients and precapillary PH in 48/72 (66.7%) patients. Moderate to strong correlations between core intrapulmonary vessel volumes and mPAP were observed in postcapillary PH patients with a maximum at 50% core lung volume (r=0.71, P<0.001). No significant influence of age or sex on this relationship was identified. Correlation with RHC measurements was weak or negligible in patients with precapillary PH.</p><p><strong>Conclusions: </strong>Automated volumetry of vessels in the core lung strongly correlated with mPAP in patients with postcapillary PH and has potential for non-invasive assessment of postcapillary PH in patients undergoing CTPA.</p>\",\"PeriodicalId\":9592,\"journal\":{\"name\":\"Cardiovascular diagnosis and therapy\",\"volume\":\"14 6\",\"pages\":\"1083-1095\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular diagnosis and therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/cdt-24-293\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular diagnosis and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/cdt-24-293","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Automated volumetry of core and peel intrapulmonary vasculature on computed tomography angiography for non-invasive estimation of hemodynamics in patients with pulmonary hypertension (2022 updated hemodynamic definition).
Background: Computed tomography pulmonary angiography (CTPA) is frequently performed in patients with pulmonary hypertension (PH) and may aid non-invasive estimation of pulmonary hemodynamics. We, therefore, investigated automated volumetry of intrapulmonary vasculature on CTPA, separated into core and peel fractions of the lung volume and its potential to differentially reflect pulmonary hemodynamics in patients with pre- and postcapillary PH.
Methods: A retrospective case-control study of 72 consecutive patients with PH according to the 2022 joint guidelines of the European Society of Cardiology and the European Respiratory Society who underwent right heart catheterization (RHC) and CTPA within 7 days between August 2013 and February 2016 at Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany) was conducted. Vessel segmentation was performed using the in-house software YACTA. Vascular volumes in different core and peel fractions of the lung were corrected for body surface area. Spearman correlation coefficients with mean pulmonary arterial pressure (mPAP), pulmonary arterial wedge pressure (PAWP) and pulmonary vascular resistance (PVR) were calculated, and a linear regression analysis was done to account for potential confounders.
Results: Median age of the study sample was 71.5 years [interquartile range (IQR), 60.0-77.0 years], 48 (66.67%) were female. Median mPAP was 35.5 mmHg (IQR, 27.0-47.2 mmHg). Postcapillary PH was present in 24/72 (33.3%) patients and precapillary PH in 48/72 (66.7%) patients. Moderate to strong correlations between core intrapulmonary vessel volumes and mPAP were observed in postcapillary PH patients with a maximum at 50% core lung volume (r=0.71, P<0.001). No significant influence of age or sex on this relationship was identified. Correlation with RHC measurements was weak or negligible in patients with precapillary PH.
Conclusions: Automated volumetry of vessels in the core lung strongly correlated with mPAP in patients with postcapillary PH and has potential for non-invasive assessment of postcapillary PH in patients undergoing CTPA.
期刊介绍:
The journal ''Cardiovascular Diagnosis and Therapy'' (Print ISSN: 2223-3652; Online ISSN: 2223-3660) accepts basic and clinical science submissions related to Cardiovascular Medicine and Surgery. The mission of the journal is the rapid exchange of scientific information between clinicians and scientists worldwide. To reach this goal, the journal will focus on novel media, using a web-based, digital format in addition to traditional print-version. This includes on-line submission, review, publication, and distribution. The digital format will also allow submission of extensive supporting visual material, both images and video. The website www.thecdt.org will serve as the central hub and also allow posting of comments and on-line discussion. The web-site of the journal will be linked to a number of international web-sites (e.g. www.dxy.cn), which will significantly expand the distribution of its contents.