Saman Rashid, Asmat Salim, Nadia Naeem, Kanwal Haneef
{"title":"过氧化氢预处理和丙戊酸对间充质干细胞肝分化的协同作用。","authors":"Saman Rashid, Asmat Salim, Nadia Naeem, Kanwal Haneef","doi":"10.2174/0113892037343658241111051831","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Ex vivo preconditioning increases the therapeutic potential of mesenchymal stem cells (MSCs) in terms of antioxidant activity, growth factor production, homing, differentiation, and immunomodulation. Therefore, it is considered an effective strategy to be used before transplantation and therapeutic application of MSCs. Histone deacetylase inhibitor (HDACi), valproic acid (VPA), has been reported to induce hepatic differentiation in MSCs. Although individual studies have shown that preconditioning and epigenetic modification enhance the survival and differentiation of MSCs, the combined effects of these therapies have not been fully explored. This study aims to investigate the combined effect of hydrogen peroxide (H2O2) preconditioning and HDACi (valproic acid) on the differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) into hepatic-like cells.</p><p><strong>Methods: </strong>MSCs were first preconditioned with H2O2 and then cultured with VPA. The migration and proliferation potential of the treated cells were evaluated using wound healing and colony-- forming unit assays. Furthermore, the expression of hepatic genes (FOXA2, CK8, CK18, TAT) and proteins (AFP, ALB, TAT) was evaluated in all treated groups.</p><p><strong>Results: </strong>The combined therapy group exhibited enhanced cell migration and proliferation, as evidenced by wound healing and colony-forming unit assays. Additionally, the combined treatment group showed higher expression of FOXA2, CK8, and CK18 hepatic genes and TAT protein, suggesting an improved differentiation of stem cells into hepatocytes.</p><p><strong>Conclusion: </strong>In conclusion, the combination of H2O2 and VPA emerges as an important factor in promoting hepatocyte differentiation. However, further studies are required to optimize this protocol for future therapeutics.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Effects of Hydrogen Peroxide Preconditioning and Valproic Acid on Hepatic Differentiation of Mesenchymal Stem Cells.\",\"authors\":\"Saman Rashid, Asmat Salim, Nadia Naeem, Kanwal Haneef\",\"doi\":\"10.2174/0113892037343658241111051831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Ex vivo preconditioning increases the therapeutic potential of mesenchymal stem cells (MSCs) in terms of antioxidant activity, growth factor production, homing, differentiation, and immunomodulation. Therefore, it is considered an effective strategy to be used before transplantation and therapeutic application of MSCs. Histone deacetylase inhibitor (HDACi), valproic acid (VPA), has been reported to induce hepatic differentiation in MSCs. Although individual studies have shown that preconditioning and epigenetic modification enhance the survival and differentiation of MSCs, the combined effects of these therapies have not been fully explored. This study aims to investigate the combined effect of hydrogen peroxide (H2O2) preconditioning and HDACi (valproic acid) on the differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) into hepatic-like cells.</p><p><strong>Methods: </strong>MSCs were first preconditioned with H2O2 and then cultured with VPA. The migration and proliferation potential of the treated cells were evaluated using wound healing and colony-- forming unit assays. Furthermore, the expression of hepatic genes (FOXA2, CK8, CK18, TAT) and proteins (AFP, ALB, TAT) was evaluated in all treated groups.</p><p><strong>Results: </strong>The combined therapy group exhibited enhanced cell migration and proliferation, as evidenced by wound healing and colony-forming unit assays. Additionally, the combined treatment group showed higher expression of FOXA2, CK8, and CK18 hepatic genes and TAT protein, suggesting an improved differentiation of stem cells into hepatocytes.</p><p><strong>Conclusion: </strong>In conclusion, the combination of H2O2 and VPA emerges as an important factor in promoting hepatocyte differentiation. However, further studies are required to optimize this protocol for future therapeutics.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037343658241111051831\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037343658241111051831","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synergistic Effects of Hydrogen Peroxide Preconditioning and Valproic Acid on Hepatic Differentiation of Mesenchymal Stem Cells.
Introduction: Ex vivo preconditioning increases the therapeutic potential of mesenchymal stem cells (MSCs) in terms of antioxidant activity, growth factor production, homing, differentiation, and immunomodulation. Therefore, it is considered an effective strategy to be used before transplantation and therapeutic application of MSCs. Histone deacetylase inhibitor (HDACi), valproic acid (VPA), has been reported to induce hepatic differentiation in MSCs. Although individual studies have shown that preconditioning and epigenetic modification enhance the survival and differentiation of MSCs, the combined effects of these therapies have not been fully explored. This study aims to investigate the combined effect of hydrogen peroxide (H2O2) preconditioning and HDACi (valproic acid) on the differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) into hepatic-like cells.
Methods: MSCs were first preconditioned with H2O2 and then cultured with VPA. The migration and proliferation potential of the treated cells were evaluated using wound healing and colony-- forming unit assays. Furthermore, the expression of hepatic genes (FOXA2, CK8, CK18, TAT) and proteins (AFP, ALB, TAT) was evaluated in all treated groups.
Results: The combined therapy group exhibited enhanced cell migration and proliferation, as evidenced by wound healing and colony-forming unit assays. Additionally, the combined treatment group showed higher expression of FOXA2, CK8, and CK18 hepatic genes and TAT protein, suggesting an improved differentiation of stem cells into hepatocytes.
Conclusion: In conclusion, the combination of H2O2 and VPA emerges as an important factor in promoting hepatocyte differentiation. However, further studies are required to optimize this protocol for future therapeutics.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.