Francisco Figueroa, Lili Salinas, Phung N Thai, Claire B Montgomery, Nipavan Chiamvimonvat, Gino Cortopassi, Elena N Dedkova
{"title":"心电图poincar<s:1>图分析揭示了奥马洛龙对弗里德赖希共济失调小鼠模型的有益作用。","authors":"Francisco Figueroa, Lili Salinas, Phung N Thai, Claire B Montgomery, Nipavan Chiamvimonvat, Gino Cortopassi, Elena N Dedkova","doi":"10.1016/j.hrthm.2024.12.041","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Friedreich ataxia (FA) is a rare inherited neuromuscular disorder whereby most patients die of lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in patients with FA are poorly understood.</p><p><strong>Objective: </strong>This study aimed to examine cardiac electrical signal propagation in a mouse model of FA with severe cardiomyopathy and to evaluate effects of omaveloxolone (OMAV), the first Food and Drug Administration-approved therapy.</p><p><strong>Methods: </strong>Cardiac-specific MCK-Cre frataxin knockout (FXN-cKO) mice were used to mimic FA cardiomyopathy. In vivo surface electrocardiogram (ECG) recordings, Western blotting, quantitative real-time polymerase chain reaction analysis, and histochemistry were performed.</p><p><strong>Results: </strong>Characteristics like long QT syndrome, interatrial block, and ST-segment abnormalities in patients with FA were identified in FXN-cKO mice. FXN-cKO mice exhibited sexual dimorphism in electrical signal propagation and cardiac structural integrity. Untreated FA males showed increased ventricular propagation intervals, whereas females exhibited delayed atrial propagation. OMAV showed no significant therapeutic effect on average ECG time intervals but improved chamber-specific waveforms when aggregated frequency distributions were analyzed. The J wave was absent in FXN-cKO male mice but reappeared with OMAV treatment. Poincaré plots revealed disparate idiopathic arrhythmias with multi-clustering events in individual mice with high incidence in FXN-cKO males. OMAV treatment reduced multi-clustering events to a single cluster; however, autonomic nervous system dysfunction still remained.</p><p><strong>Conclusion: </strong>Our study revealed significant electrical propagation disturbances and sexual dimorphism in FXN-cKO mice with severe cardiomyopathy. Poincaré plots identified irregularities in heart rhythm and autonomic nervous system dysfunction. OMAV improved heart function by stabilizing early repolarization and reducing disparate arrhythmias. This work stresses sex-specific ECG interpretations and alternative mathematical approaches for drug testing in FA models.</p>","PeriodicalId":12886,"journal":{"name":"Heart rhythm","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poincaré plot analysis of electrocardiogram uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich ataxia.\",\"authors\":\"Francisco Figueroa, Lili Salinas, Phung N Thai, Claire B Montgomery, Nipavan Chiamvimonvat, Gino Cortopassi, Elena N Dedkova\",\"doi\":\"10.1016/j.hrthm.2024.12.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Friedreich ataxia (FA) is a rare inherited neuromuscular disorder whereby most patients die of lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in patients with FA are poorly understood.</p><p><strong>Objective: </strong>This study aimed to examine cardiac electrical signal propagation in a mouse model of FA with severe cardiomyopathy and to evaluate effects of omaveloxolone (OMAV), the first Food and Drug Administration-approved therapy.</p><p><strong>Methods: </strong>Cardiac-specific MCK-Cre frataxin knockout (FXN-cKO) mice were used to mimic FA cardiomyopathy. In vivo surface electrocardiogram (ECG) recordings, Western blotting, quantitative real-time polymerase chain reaction analysis, and histochemistry were performed.</p><p><strong>Results: </strong>Characteristics like long QT syndrome, interatrial block, and ST-segment abnormalities in patients with FA were identified in FXN-cKO mice. FXN-cKO mice exhibited sexual dimorphism in electrical signal propagation and cardiac structural integrity. Untreated FA males showed increased ventricular propagation intervals, whereas females exhibited delayed atrial propagation. OMAV showed no significant therapeutic effect on average ECG time intervals but improved chamber-specific waveforms when aggregated frequency distributions were analyzed. The J wave was absent in FXN-cKO male mice but reappeared with OMAV treatment. Poincaré plots revealed disparate idiopathic arrhythmias with multi-clustering events in individual mice with high incidence in FXN-cKO males. OMAV treatment reduced multi-clustering events to a single cluster; however, autonomic nervous system dysfunction still remained.</p><p><strong>Conclusion: </strong>Our study revealed significant electrical propagation disturbances and sexual dimorphism in FXN-cKO mice with severe cardiomyopathy. Poincaré plots identified irregularities in heart rhythm and autonomic nervous system dysfunction. OMAV improved heart function by stabilizing early repolarization and reducing disparate arrhythmias. This work stresses sex-specific ECG interpretations and alternative mathematical approaches for drug testing in FA models.</p>\",\"PeriodicalId\":12886,\"journal\":{\"name\":\"Heart rhythm\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heart rhythm\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hrthm.2024.12.041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart rhythm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.hrthm.2024.12.041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Poincaré plot analysis of electrocardiogram uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich ataxia.
Background: Friedreich ataxia (FA) is a rare inherited neuromuscular disorder whereby most patients die of lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in patients with FA are poorly understood.
Objective: This study aimed to examine cardiac electrical signal propagation in a mouse model of FA with severe cardiomyopathy and to evaluate effects of omaveloxolone (OMAV), the first Food and Drug Administration-approved therapy.
Methods: Cardiac-specific MCK-Cre frataxin knockout (FXN-cKO) mice were used to mimic FA cardiomyopathy. In vivo surface electrocardiogram (ECG) recordings, Western blotting, quantitative real-time polymerase chain reaction analysis, and histochemistry were performed.
Results: Characteristics like long QT syndrome, interatrial block, and ST-segment abnormalities in patients with FA were identified in FXN-cKO mice. FXN-cKO mice exhibited sexual dimorphism in electrical signal propagation and cardiac structural integrity. Untreated FA males showed increased ventricular propagation intervals, whereas females exhibited delayed atrial propagation. OMAV showed no significant therapeutic effect on average ECG time intervals but improved chamber-specific waveforms when aggregated frequency distributions were analyzed. The J wave was absent in FXN-cKO male mice but reappeared with OMAV treatment. Poincaré plots revealed disparate idiopathic arrhythmias with multi-clustering events in individual mice with high incidence in FXN-cKO males. OMAV treatment reduced multi-clustering events to a single cluster; however, autonomic nervous system dysfunction still remained.
Conclusion: Our study revealed significant electrical propagation disturbances and sexual dimorphism in FXN-cKO mice with severe cardiomyopathy. Poincaré plots identified irregularities in heart rhythm and autonomic nervous system dysfunction. OMAV improved heart function by stabilizing early repolarization and reducing disparate arrhythmias. This work stresses sex-specific ECG interpretations and alternative mathematical approaches for drug testing in FA models.
期刊介绍:
HeartRhythm, the official Journal of the Heart Rhythm Society and the Cardiac Electrophysiology Society, is a unique journal for fundamental discovery and clinical applicability.
HeartRhythm integrates the entire cardiac electrophysiology (EP) community from basic and clinical academic researchers, private practitioners, engineers, allied professionals, industry, and trainees, all of whom are vital and interdependent members of our EP community.
The Heart Rhythm Society is the international leader in science, education, and advocacy for cardiac arrhythmia professionals and patients, and the primary information resource on heart rhythm disorders. Its mission is to improve the care of patients by promoting research, education, and optimal health care policies and standards.