Vadim Zotev, Jessica R. McQuaid, Cidney R. Robertson-Benta, Anne K. Hittson, Tracey V. Wick, Upasana Nathaniel, Samuel D. Miller, Josef M. Ling, Harm J. van der Horn, Andrew R. Mayer
{"title":"平衡主动假手术研究设计中同时功能磁共振成像对认知训练中Theta脑电图神经反馈程序的评价。","authors":"Vadim Zotev, Jessica R. McQuaid, Cidney R. Robertson-Benta, Anne K. Hittson, Tracey V. Wick, Upasana Nathaniel, Samuel D. Miller, Josef M. Ling, Harm J. van der Horn, Andrew R. Mayer","doi":"10.1002/hbm.70127","DOIUrl":null,"url":null,"abstract":"<p>Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design. Healthy volunteers (<i>n</i> = 18) used EEG-nf to upregulate frontal theta EEG asymmetry (FTA) during fMRI while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. The FTA was defined as power asymmetry for channels F3 and F4 in [4–7] Hz band. Sham feedback was provided based on asymmetry of motion-related artifacts. The experimental procedure included two training runs with the active EEG-nf and two training runs with the sham feedback, in a randomized order. The participants showed significantly more positive FTA changes during the active EEG-nf conditions compared to the sham conditions, associated with significantly higher theta EEG power changes for channel F3. Temporal correlations between the FTA and fMRI activities of prefrontal, parietal, and occipital brain regions were significantly enhanced during the active EEG-nf conditions compared to the sham conditions. Temporal correlation between theta EEG power for channel F3 and fMRI activity of the left dorsolateral prefrontal cortex (DLPFC) was also significantly enhanced. Significant active-vs-sham difference in fMRI activations was observed for the left DLPFC. Our results demonstrate that mechanisms of EEG-nf training can be reliably evaluated using the counterbalanced active-sham study design and simultaneous fMRI.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711506/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Theta EEG Neurofeedback Procedure for Cognitive Training Using Simultaneous fMRI in Counterbalanced Active-Sham Study Design\",\"authors\":\"Vadim Zotev, Jessica R. McQuaid, Cidney R. Robertson-Benta, Anne K. Hittson, Tracey V. Wick, Upasana Nathaniel, Samuel D. Miller, Josef M. Ling, Harm J. van der Horn, Andrew R. Mayer\",\"doi\":\"10.1002/hbm.70127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design. Healthy volunteers (<i>n</i> = 18) used EEG-nf to upregulate frontal theta EEG asymmetry (FTA) during fMRI while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. The FTA was defined as power asymmetry for channels F3 and F4 in [4–7] Hz band. Sham feedback was provided based on asymmetry of motion-related artifacts. The experimental procedure included two training runs with the active EEG-nf and two training runs with the sham feedback, in a randomized order. The participants showed significantly more positive FTA changes during the active EEG-nf conditions compared to the sham conditions, associated with significantly higher theta EEG power changes for channel F3. Temporal correlations between the FTA and fMRI activities of prefrontal, parietal, and occipital brain regions were significantly enhanced during the active EEG-nf conditions compared to the sham conditions. Temporal correlation between theta EEG power for channel F3 and fMRI activity of the left dorsolateral prefrontal cortex (DLPFC) was also significantly enhanced. Significant active-vs-sham difference in fMRI activations was observed for the left DLPFC. Our results demonstrate that mechanisms of EEG-nf training can be reliably evaluated using the counterbalanced active-sham study design and simultaneous fMRI.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70127\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70127","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Evaluation of Theta EEG Neurofeedback Procedure for Cognitive Training Using Simultaneous fMRI in Counterbalanced Active-Sham Study Design
Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design. Healthy volunteers (n = 18) used EEG-nf to upregulate frontal theta EEG asymmetry (FTA) during fMRI while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. The FTA was defined as power asymmetry for channels F3 and F4 in [4–7] Hz band. Sham feedback was provided based on asymmetry of motion-related artifacts. The experimental procedure included two training runs with the active EEG-nf and two training runs with the sham feedback, in a randomized order. The participants showed significantly more positive FTA changes during the active EEG-nf conditions compared to the sham conditions, associated with significantly higher theta EEG power changes for channel F3. Temporal correlations between the FTA and fMRI activities of prefrontal, parietal, and occipital brain regions were significantly enhanced during the active EEG-nf conditions compared to the sham conditions. Temporal correlation between theta EEG power for channel F3 and fMRI activity of the left dorsolateral prefrontal cortex (DLPFC) was also significantly enhanced. Significant active-vs-sham difference in fMRI activations was observed for the left DLPFC. Our results demonstrate that mechanisms of EEG-nf training can be reliably evaluated using the counterbalanced active-sham study design and simultaneous fMRI.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.