Oscar Eduardo Tabares-Mosquera, Javier Andrés Juárez-Díaz, Rafael Camacho-Carranza, Patricia Ramos-Morales
{"title":"n -亚硝基二甲胺及其代谢物甲醛对黑腹果蝇的跨代生殖和发育毒性","authors":"Oscar Eduardo Tabares-Mosquera, Javier Andrés Juárez-Díaz, Rafael Camacho-Carranza, Patricia Ramos-Morales","doi":"10.1002/jat.4749","DOIUrl":null,"url":null,"abstract":"<p><p>N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde. Hence, potential health and ecological risks are of concern. Due to limited information on the long-term effects of exposure to these compounds at environmentally relevant concentrations, this work aimed to compare the transgenerational reproductive and developmental toxicity of separate exposures to NDMA or its metabolite formaldehyde in Drosophila melanogaster over four generations. The parental flies were fed NDMA or formaldehyde (1.19E-06 to 5 mM) for 48 h during the third larval instar. Subsequent offspring (F1-F3) were grown under compound-free conditions. In the parental generation, both exposures modified the time to emergence and reduced the number of progenies. NDMA, but not formaldehyde, was lethal, affected fertility, and weakly induced malformations. In the next generations, both exposures induced malformed flies and modified the number of offspring. Reproductive toxicity and malformations were maintained for at least three generations, suggesting that detrimental effects could extend to unexposed offspring. This is the first study reporting the associated individual transgenerational effects on reproduction and development between NDMA and its metabolite formaldehyde in D. melanogaster, highlighting the relevance of evaluating multiple generations to accurately determine the health and environmental risks of pollutants.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster.\",\"authors\":\"Oscar Eduardo Tabares-Mosquera, Javier Andrés Juárez-Díaz, Rafael Camacho-Carranza, Patricia Ramos-Morales\",\"doi\":\"10.1002/jat.4749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde. Hence, potential health and ecological risks are of concern. Due to limited information on the long-term effects of exposure to these compounds at environmentally relevant concentrations, this work aimed to compare the transgenerational reproductive and developmental toxicity of separate exposures to NDMA or its metabolite formaldehyde in Drosophila melanogaster over four generations. The parental flies were fed NDMA or formaldehyde (1.19E-06 to 5 mM) for 48 h during the third larval instar. Subsequent offspring (F1-F3) were grown under compound-free conditions. In the parental generation, both exposures modified the time to emergence and reduced the number of progenies. NDMA, but not formaldehyde, was lethal, affected fertility, and weakly induced malformations. In the next generations, both exposures induced malformed flies and modified the number of offspring. Reproductive toxicity and malformations were maintained for at least three generations, suggesting that detrimental effects could extend to unexposed offspring. This is the first study reporting the associated individual transgenerational effects on reproduction and development between NDMA and its metabolite formaldehyde in D. melanogaster, highlighting the relevance of evaluating multiple generations to accurately determine the health and environmental risks of pollutants.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jat.4749\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4749","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
n -亚硝基二甲胺(NDMA)是一种已知的水消毒副产物(DBP),其特征是一种强效肝毒素、促生剂和可能的人类致癌物;这是因为代谢物与它的生物转化有关。NDMA的代谢产生甲醛,另一种烷基化剂和DBP。这两种化合物都是由自然和人为来源产生的,但适用于NDMA的安全限制并不适用于甲醛的使用。因此,潜在的健康和生态风险令人担忧。由于暴露于与环境相关浓度的这些化合物的长期影响的信息有限,本研究旨在比较4代以上分别暴露于NDMA或其代谢物甲醛对果蝇的跨代生殖和发育毒性。3龄亲本蝇分别饲喂NDMA和甲醛(1.19E-06 ~ 5 mM) 48 h。随后的后代(F1-F3)在无化合物条件下生长。在亲代中,两种暴露都改变了出现的时间并减少了后代的数量。NDMA,而不是甲醛,是致命的,影响生育,和弱诱导畸形。在下一代中,两种暴露都诱发了畸形果蝇,并改变了后代的数量。生殖毒性和畸形至少维持了三代,这表明有害影响可能延伸到未暴露的后代。该研究首次报道了黑腹龙中NDMA及其代谢物甲醛对生殖和发育的相关个体跨代影响,强调了对多代进行评估以准确确定污染物的健康和环境风险的相关性。
Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster.
N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde. Hence, potential health and ecological risks are of concern. Due to limited information on the long-term effects of exposure to these compounds at environmentally relevant concentrations, this work aimed to compare the transgenerational reproductive and developmental toxicity of separate exposures to NDMA or its metabolite formaldehyde in Drosophila melanogaster over four generations. The parental flies were fed NDMA or formaldehyde (1.19E-06 to 5 mM) for 48 h during the third larval instar. Subsequent offspring (F1-F3) were grown under compound-free conditions. In the parental generation, both exposures modified the time to emergence and reduced the number of progenies. NDMA, but not formaldehyde, was lethal, affected fertility, and weakly induced malformations. In the next generations, both exposures induced malformed flies and modified the number of offspring. Reproductive toxicity and malformations were maintained for at least three generations, suggesting that detrimental effects could extend to unexposed offspring. This is the first study reporting the associated individual transgenerational effects on reproduction and development between NDMA and its metabolite formaldehyde in D. melanogaster, highlighting the relevance of evaluating multiple generations to accurately determine the health and environmental risks of pollutants.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.