三十年的星空凝视:扩大类固醇急性调节蛋白的宇宙。

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Endocrinology Pub Date : 2025-01-01 DOI:10.1530/JOE-24-0310
Walter L Miller
{"title":"三十年的星空凝视:扩大类固醇急性调节蛋白的宇宙。","authors":"Walter L Miller","doi":"10.1530/JOE-24-0310","DOIUrl":null,"url":null,"abstract":"<p><p>Current understanding of the biology, biochemistry and genetics of the steroidogenic acute regulatory protein (StAR) and its deficiency state (congenital lipoid adrenal hyperplasia, lipoid CAH) involves the complex interplay of four areas of study: the acute regulation of steroidogenesis, clinical phenomena in lipoid CAH, the enzymatic conversion of cholesterol to pregnenolone in steroidogenic mitochondria, and the cell biology of StAR. This review traces the origins of these areas of study, describes how they have been woven into an increasingly coherent fabric, and tries to explore some remaining loose ends in this ongoing field of endocrine research. Abundant research from multiple laboratories establishes that StAR is required for the rapid, abundant steroidal responses of the adrenals and gonads, but all steroidogenic cells, especially the placenta, have StAR-independent steroidogenesis, whose basis remains under investigation. Lipoid CAH is the StAR-knockout of nature whose complex (and unexpected) clinical features are explained by the 'two-hit model' in which StAR-dependent and StAR-independent steroidogenesis are sequentially lost. StAR is targeted to mitochondria and acts on the outer mitochondrial membrane before being imported via the 'translocase of outer membrane' (Tom) system, and then inactivated by mitochondrial proteases. A role for the 'translocator protein' (TSPO) has long been proposed, but an essential role for TSPO is excluded by recent transgenic mouse experiments. Crystal structures show that a StAR molecule can bind one cholesterol, but does not explain how each StAR molecule triggers the import of hundreds on cholesterol molecules; this is the most pressing area for future research.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thirty years of StAR gazing: expanding the universe of the steroidogenic acute regulatory protein.\",\"authors\":\"Walter L Miller\",\"doi\":\"10.1530/JOE-24-0310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current understanding of the biology, biochemistry and genetics of the steroidogenic acute regulatory protein (StAR) and its deficiency state (congenital lipoid adrenal hyperplasia, lipoid CAH) involves the complex interplay of four areas of study: the acute regulation of steroidogenesis, clinical phenomena in lipoid CAH, the enzymatic conversion of cholesterol to pregnenolone in steroidogenic mitochondria, and the cell biology of StAR. This review traces the origins of these areas of study, describes how they have been woven into an increasingly coherent fabric, and tries to explore some remaining loose ends in this ongoing field of endocrine research. Abundant research from multiple laboratories establishes that StAR is required for the rapid, abundant steroidal responses of the adrenals and gonads, but all steroidogenic cells, especially the placenta, have StAR-independent steroidogenesis, whose basis remains under investigation. Lipoid CAH is the StAR-knockout of nature whose complex (and unexpected) clinical features are explained by the 'two-hit model' in which StAR-dependent and StAR-independent steroidogenesis are sequentially lost. StAR is targeted to mitochondria and acts on the outer mitochondrial membrane before being imported via the 'translocase of outer membrane' (Tom) system, and then inactivated by mitochondrial proteases. A role for the 'translocator protein' (TSPO) has long been proposed, but an essential role for TSPO is excluded by recent transgenic mouse experiments. Crystal structures show that a StAR molecule can bind one cholesterol, but does not explain how each StAR molecule triggers the import of hundreds on cholesterol molecules; this is the most pressing area for future research.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-24-0310\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-24-0310","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目前对类固醇急性调节蛋白(StAR)及其缺乏状态(先天性脂质肾上腺增生,脂质CAH)的生物学、生物化学和遗传学的理解涉及四个研究领域的复杂相互作用:类固醇生成的急性调节、脂质CAH的临床现象、类固醇生成线粒体中胆固醇向孕烯醇酮的酶促转化以及StAR的细胞生物学。这篇综述追溯了这些研究领域的起源,描述了它们是如何编织成一个日益连贯的结构的,并试图探索这个正在进行的内分泌研究领域的一些遗留问题。来自多个实验室的大量研究表明,肾上腺和性腺的快速、丰富的类固醇反应需要StAR,但所有类固醇生成细胞,特别是胎盘,都有独立于StAR的类固醇生成,其基础仍在研究中。脂质CAH是自然界的star敲除,其复杂的(和意想不到的)临床特征可以用“双击模型”来解释,在这种模型中,star依赖性和star非依赖性的甾体形成依次丧失。StAR以线粒体为靶点,作用于线粒体外膜,然后通过“外膜转位酶”(Tom)系统输入,然后被线粒体蛋白酶灭活。“转运蛋白”(TSPO)的作用早已被提出,但最近的转基因小鼠实验排除了TSPO的重要作用。晶体结构表明,一个StAR分子可以结合一个胆固醇,但无法解释每个StAR分子如何触发数百个胆固醇分子的进口;这是未来最迫切需要研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thirty years of StAR gazing: expanding the universe of the steroidogenic acute regulatory protein.

Current understanding of the biology, biochemistry and genetics of the steroidogenic acute regulatory protein (StAR) and its deficiency state (congenital lipoid adrenal hyperplasia, lipoid CAH) involves the complex interplay of four areas of study: the acute regulation of steroidogenesis, clinical phenomena in lipoid CAH, the enzymatic conversion of cholesterol to pregnenolone in steroidogenic mitochondria, and the cell biology of StAR. This review traces the origins of these areas of study, describes how they have been woven into an increasingly coherent fabric, and tries to explore some remaining loose ends in this ongoing field of endocrine research. Abundant research from multiple laboratories establishes that StAR is required for the rapid, abundant steroidal responses of the adrenals and gonads, but all steroidogenic cells, especially the placenta, have StAR-independent steroidogenesis, whose basis remains under investigation. Lipoid CAH is the StAR-knockout of nature whose complex (and unexpected) clinical features are explained by the 'two-hit model' in which StAR-dependent and StAR-independent steroidogenesis are sequentially lost. StAR is targeted to mitochondria and acts on the outer mitochondrial membrane before being imported via the 'translocase of outer membrane' (Tom) system, and then inactivated by mitochondrial proteases. A role for the 'translocator protein' (TSPO) has long been proposed, but an essential role for TSPO is excluded by recent transgenic mouse experiments. Crystal structures show that a StAR molecule can bind one cholesterol, but does not explain how each StAR molecule triggers the import of hundreds on cholesterol molecules; this is the most pressing area for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
期刊最新文献
Cardiovascular effects of tirzepatide. The interplay between ECTO and ENDO exposomes on metabolic diseases throughout lifespan: exposome loop as a new concept. The role of glucagon-like peptides in osteosarcopenia. GLP-1R/NPY2R regulate gene expression, ovarian and adrenal morphology in HFD mice. Thirty years of StAR gazing: expanding the universe of the steroidogenic acute regulatory protein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1