Rossella Cannarella, Roberto Curto, Rosita A Condorelli, Agata Grillo, Antonio Aversa, Aldo E Calogero, Sandro La Vignera
{"title":"精液微生物群对人类睾丸类固醇生成的影响:一项前瞻性研究。","authors":"Rossella Cannarella, Roberto Curto, Rosita A Condorelli, Agata Grillo, Antonio Aversa, Aldo E Calogero, Sandro La Vignera","doi":"10.1007/s10815-024-03351-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Preclinical evidence has demonstrated that gut microbiota composition can influence steroid hormone biosynthesis and spermatogenesis. This study aims to investigate the association of seminal microbiota and testicular steroidogenesis.</p><p><strong>Patients and methods: </strong>One hundred adult eugonadal men were consecutively enrolled. The seminal concentration of Lactobacilli, anaerobic and facultative bacteria, as well as serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and total testosterone (TT) were evaluated. Unadjusted and adjusted multi-regression models were built to evaluate the relationship between seminal Lactobacilli, anaerobic and facultative bacteria, and Lactobacilli/total bacteria ratio, and serum LH, FSH, and TT. The concentrations of seminal Lactobacilli, anaerobic, and facultative bacteria predictive of serum TT values in the lowest quartile (< 3.8 ng/mL) were calculated.</p><p><strong>Results: </strong>TT levels were weakly and positively correlated with seminal Lactobacillus concentration (r = 0.33; p = 0.001), with seminal Lactobacilli/total bacteria ratio (r = 0.89; p < 0.001), and negatively with anaerobic and facultative bacteria (r = - 0.69; p < 0.001). Opposite correlations were found for gonadotropin concentrations. These data persisted after adjustment for confounding factors. Seminal concentration of Lactobacilli ≤ 0.1 × 10<sup>6</sup>/mL (AUC 0.917, 95% CI: 0.845 to 0.963), of anaerobic and facultative bacteria > 2 × 10<sup>4</sup>/mL (AUC 0.924, 95% CI: 0.853 to 0.967), or a Lactobacilli/total bacteria ratio ≤ 90% (AUC 0.910, 95% CI: 0.837 to 0.958) were found to predict serum TT level < 3.8 ng/mL with a sensitivity of 92.0% and a specificity of 88.0%.</p><p><strong>Conclusion: </strong>A relationship between the composition of the seminal microbiota and testicular steroidogenesis seems to exist. The mechanisms underlying this association are still unknown.</p>","PeriodicalId":15246,"journal":{"name":"Journal of Assisted Reproduction and Genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of seminal microbiota on human testicular steroidogenesis: a prospective study.\",\"authors\":\"Rossella Cannarella, Roberto Curto, Rosita A Condorelli, Agata Grillo, Antonio Aversa, Aldo E Calogero, Sandro La Vignera\",\"doi\":\"10.1007/s10815-024-03351-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Preclinical evidence has demonstrated that gut microbiota composition can influence steroid hormone biosynthesis and spermatogenesis. This study aims to investigate the association of seminal microbiota and testicular steroidogenesis.</p><p><strong>Patients and methods: </strong>One hundred adult eugonadal men were consecutively enrolled. The seminal concentration of Lactobacilli, anaerobic and facultative bacteria, as well as serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and total testosterone (TT) were evaluated. Unadjusted and adjusted multi-regression models were built to evaluate the relationship between seminal Lactobacilli, anaerobic and facultative bacteria, and Lactobacilli/total bacteria ratio, and serum LH, FSH, and TT. The concentrations of seminal Lactobacilli, anaerobic, and facultative bacteria predictive of serum TT values in the lowest quartile (< 3.8 ng/mL) were calculated.</p><p><strong>Results: </strong>TT levels were weakly and positively correlated with seminal Lactobacillus concentration (r = 0.33; p = 0.001), with seminal Lactobacilli/total bacteria ratio (r = 0.89; p < 0.001), and negatively with anaerobic and facultative bacteria (r = - 0.69; p < 0.001). Opposite correlations were found for gonadotropin concentrations. These data persisted after adjustment for confounding factors. Seminal concentration of Lactobacilli ≤ 0.1 × 10<sup>6</sup>/mL (AUC 0.917, 95% CI: 0.845 to 0.963), of anaerobic and facultative bacteria > 2 × 10<sup>4</sup>/mL (AUC 0.924, 95% CI: 0.853 to 0.967), or a Lactobacilli/total bacteria ratio ≤ 90% (AUC 0.910, 95% CI: 0.837 to 0.958) were found to predict serum TT level < 3.8 ng/mL with a sensitivity of 92.0% and a specificity of 88.0%.</p><p><strong>Conclusion: </strong>A relationship between the composition of the seminal microbiota and testicular steroidogenesis seems to exist. The mechanisms underlying this association are still unknown.</p>\",\"PeriodicalId\":15246,\"journal\":{\"name\":\"Journal of Assisted Reproduction and Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Assisted Reproduction and Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10815-024-03351-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Assisted Reproduction and Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10815-024-03351-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The influence of seminal microbiota on human testicular steroidogenesis: a prospective study.
Objective: Preclinical evidence has demonstrated that gut microbiota composition can influence steroid hormone biosynthesis and spermatogenesis. This study aims to investigate the association of seminal microbiota and testicular steroidogenesis.
Patients and methods: One hundred adult eugonadal men were consecutively enrolled. The seminal concentration of Lactobacilli, anaerobic and facultative bacteria, as well as serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and total testosterone (TT) were evaluated. Unadjusted and adjusted multi-regression models were built to evaluate the relationship between seminal Lactobacilli, anaerobic and facultative bacteria, and Lactobacilli/total bacteria ratio, and serum LH, FSH, and TT. The concentrations of seminal Lactobacilli, anaerobic, and facultative bacteria predictive of serum TT values in the lowest quartile (< 3.8 ng/mL) were calculated.
Results: TT levels were weakly and positively correlated with seminal Lactobacillus concentration (r = 0.33; p = 0.001), with seminal Lactobacilli/total bacteria ratio (r = 0.89; p < 0.001), and negatively with anaerobic and facultative bacteria (r = - 0.69; p < 0.001). Opposite correlations were found for gonadotropin concentrations. These data persisted after adjustment for confounding factors. Seminal concentration of Lactobacilli ≤ 0.1 × 106/mL (AUC 0.917, 95% CI: 0.845 to 0.963), of anaerobic and facultative bacteria > 2 × 104/mL (AUC 0.924, 95% CI: 0.853 to 0.967), or a Lactobacilli/total bacteria ratio ≤ 90% (AUC 0.910, 95% CI: 0.837 to 0.958) were found to predict serum TT level < 3.8 ng/mL with a sensitivity of 92.0% and a specificity of 88.0%.
Conclusion: A relationship between the composition of the seminal microbiota and testicular steroidogenesis seems to exist. The mechanisms underlying this association are still unknown.
期刊介绍:
The Journal of Assisted Reproduction and Genetics publishes cellular, molecular, genetic, and epigenetic discoveries advancing our understanding of the biology and underlying mechanisms from gametogenesis to offspring health. Special emphasis is placed on the practice and evolution of assisted reproduction technologies (ARTs) with reference to the diagnosis and management of diseases affecting fertility. Our goal is to educate our readership in the translation of basic and clinical discoveries made from human or relevant animal models to the safe and efficacious practice of human ARTs. The scientific rigor and ethical standards embraced by the JARG editorial team ensures a broad international base of expertise guiding the marriage of contemporary clinical research paradigms with basic science discovery. JARG publishes original papers, minireviews, case reports, and opinion pieces often combined into special topic issues that will educate clinicians and scientists with interests in the mechanisms of human development that bear on the treatment of infertility and emerging innovations in human ARTs. The guiding principles of male and female reproductive health impacting pre- and post-conceptional viability and developmental potential are emphasized within the purview of human reproductive health in current and future generations of our species.
The journal is published in cooperation with the American Society for Reproductive Medicine, an organization of more than 8,000 physicians, researchers, nurses, technicians and other professionals dedicated to advancing knowledge and expertise in reproductive biology.