Yuexiang Ji, Kayo Waki, Toshimasa Yamauchi, Masaomi Nangaku, Kazuhiko Ohe
{"title":"利用非微调商业人工智能一次性提示评估日本膳食照片中的营养成分。","authors":"Yuexiang Ji, Kayo Waki, Toshimasa Yamauchi, Masaomi Nangaku, Kazuhiko Ohe","doi":"10.1177/19322968241309889","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diet interventions often have poor adherence due to burdensome food logging. Approaches using photographs assessed by artificial intelligence (AI) may make food logging easier, if they are adequately accurate.</p><p><strong>Method: </strong>We used OpenAI's GPT-4o model with one-shot prompts and no fine-tuning to assess energy, fat, protein, carbohydrate, fiber, and salt through photographs of 22 meals, comparing assessments to weighed food records for each meal and to assessments of dieticians.</p><p><strong>Results: </strong>The model had poor performance overall. For fiber, though, the model achieved an intraclass correlation coefficient of 0.71 (0.67-0.74 95% CI), well above the dietician performance of 0.57.</p><p><strong>Conclusions: </strong>The simplest use of current AI via one-shot prompting and no fine-tuning accurately assesses fiber content in meals but is inaccurate for other nutritional parameters.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"19322968241309889"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using One-Shot Prompting of Non-Fine-Tuned Commercial Artificial Intelligence to Assess Nutrients from Photographs of Japanese Meals.\",\"authors\":\"Yuexiang Ji, Kayo Waki, Toshimasa Yamauchi, Masaomi Nangaku, Kazuhiko Ohe\",\"doi\":\"10.1177/19322968241309889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diet interventions often have poor adherence due to burdensome food logging. Approaches using photographs assessed by artificial intelligence (AI) may make food logging easier, if they are adequately accurate.</p><p><strong>Method: </strong>We used OpenAI's GPT-4o model with one-shot prompts and no fine-tuning to assess energy, fat, protein, carbohydrate, fiber, and salt through photographs of 22 meals, comparing assessments to weighed food records for each meal and to assessments of dieticians.</p><p><strong>Results: </strong>The model had poor performance overall. For fiber, though, the model achieved an intraclass correlation coefficient of 0.71 (0.67-0.74 95% CI), well above the dietician performance of 0.57.</p><p><strong>Conclusions: </strong>The simplest use of current AI via one-shot prompting and no fine-tuning accurately assesses fiber content in meals but is inaccurate for other nutritional parameters.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":\" \",\"pages\":\"19322968241309889\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241309889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241309889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Using One-Shot Prompting of Non-Fine-Tuned Commercial Artificial Intelligence to Assess Nutrients from Photographs of Japanese Meals.
Background: Diet interventions often have poor adherence due to burdensome food logging. Approaches using photographs assessed by artificial intelligence (AI) may make food logging easier, if they are adequately accurate.
Method: We used OpenAI's GPT-4o model with one-shot prompts and no fine-tuning to assess energy, fat, protein, carbohydrate, fiber, and salt through photographs of 22 meals, comparing assessments to weighed food records for each meal and to assessments of dieticians.
Results: The model had poor performance overall. For fiber, though, the model achieved an intraclass correlation coefficient of 0.71 (0.67-0.74 95% CI), well above the dietician performance of 0.57.
Conclusions: The simplest use of current AI via one-shot prompting and no fine-tuning accurately assesses fiber content in meals but is inaccurate for other nutritional parameters.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.